20 research outputs found
Sozialwissenschaftliche Studien
Jörges H, Marschewski K, Driller E, Fixmer S, Zick A. Sozialwissenschaftliche Studien. In: Der Brandanschlag von Solingen: Auswirkungen und Konsequenzen - eine Dokumentation. Leverkusen: Moosdruck; 2002: 129-156
The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance
Self-motion perception is a multi-sensory process that involves visual, vestibular, and other cues. When perception of self-motion is induced using only visual motion, vestibular cues indicate that the body remains stationary, which may bias an observer’s perception. When lowering the precision of the vestibular cue by for example, lying down or by adapting to microgravity, these biases may decrease, accompanied by a decrease in precision. To test this hypothesis, we used a move-to-target task in virtual reality. Astronauts and Earth-based controls were shown a target at a range of simulated distances. After the target disappeared, forward self-motion was induced by optic flow. Participants indicated when they thought they had arrived at the target’s previously seen location. Astronauts completed the task on Earth (supine and sitting upright) prior to space travel, early and late in space, and early and late after landing. Controls completed the experiment on Earth using a similar regime with a supine posture used to simulate being in space. While variability was similar across all conditions, the supine posture led to significantly higher gains (target distance/perceived travel distance) than the sitting posture for the astronauts pre-flight and early post-flight but not late post-flight. No difference was detected between the astronauts’ performance on Earth and onboard the ISS, indicating that judgments of traveled distance were largely unaffected by long-term exposure to microgravity. Overall, this constitutes mixed evidence as to whether non-visual cues to travel distance are integrated with relevant visual cues when self-motion is simulated using optic flow alone
Domain-Specific Code Generator Modeling: A Case Study for Multi-faceted Concurrent Systems
International audienceIn this paper we discuss an elaborate case study utilizing the domain-specific development of code generators within the Cinco meta tooling suite. Cinco is a framework that allows for the automatic generation of a wide range of graphical modeling tools from an abstract high-level specification. The presented case study makes use of Cinco to rapidly construct custom graphical interfaces for multi-faceted, concur-rent systems, comprising non-functional properties like time, probability, data, and costs. The point of this approach is to provide user commu-nities and their favorite tools with graphical interfaces tailored to their specific needs. This will be illustrated by generating graphical interfaces for timed automata (TA), probabilistic timed automata (PTA), Markov decision processes (MDP) and simple labeled transition systems (LTS). The main contribution of the presented work, however, is the metamodel-based domain-specific construction of the corresponding code generators for the verification tools Uppaal, Spin, PLASMA-lab, and Prism
GeneFisher-P: variations of GeneFisher as processes in Bio-jETI
Lamprecht A-L, Margaria T, Steffen B, Sczyrba A, Hartmeier S, Giegerich R. GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioinformatics. 2008;9(Suppl 4): S13.Background: PCR primer design is an everyday, but not trivial task requiring state-of-the-art software. We describe the popular tool GeneFisher and explain its recent restructuring using workflow techniques. We apply a service-oriented approach to model and implement GeneFisher-P, a process-based version of the GeneFisher web application, as a part of the Bio-jETI platform for service modeling and execution. We show how to introduce a flexible process layer to meet the growing demand for improved user-friendliness and flexibility. Results: Within Bio-jETI, we model the process using the jABC framework, a mature model-driven, service-oriented process definition platform. We encapsulate remote legacy tools and integrate web services using jETI, an extension of the jABC for seamless integration of remote resources as basic services, ready to be used in the process. Some of the basic services used by GeneFisher are in fact already provided as individual web services at BiBiServ and can be directly accessed. Others are legacy programs, and are made available to Bio-jETI via the jETI technology. The full power of service-based process orientation is required when more bioinformatics tools, available as web services or via jETI, lead to easy extensions or variations of the basic process. This concerns for instance variations of data retrieval or alignment tools as provided by the European Bioinformatics Institute (EBI). Conclusions: The resulting service- and process-oriented GeneFisher-P demonstrates how basic services from heterogeneous sources can be easily orchestrated in the Bio-jETI platform and lead to a flexible family of specialized processes tailored to specific tasks