4,564 research outputs found

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: II. Linear Behavior in Neutral-to-Ionic Transition

    Full text link
    Dynamics of charge density and lattice displacements after the neutral phase is photoexcited is studied by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials. In contrast to the ionic-to-neutral transition studied previously, the neutral-to-ionic transition proceeds in an uncooperative manner as far as the one-dimensional system is concerned. The final ionicity is a linear function of the increment of the total energy. After the electric field is turned off, the electronic state does not significantly change, roughly keeping the ionicity, even if the transition is not completed, because the ionic domains never proliferate. As a consequence, an electric field with frequency just at the linear absorption peak causes the neutral-to-ionic transition the most efficiently. These findings are consistent with the recent experiments on the mixed-stack organic charge-transfer complex, TTF-CA. We artificially modify or remove the electron-lattice coupling to discuss the origin of such differences between the two transitions.Comment: 17 pages, 9 figure

    First ALMA Observation of a Solar Plasmoid Ejection from an X-ray Bright Point

    Get PDF
    Eruptive phenomena such as plasmoid ejections or jets are an important feature of solar activity with the potential for improving our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 A EUV line of Helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with AIA, in soft X-rays with Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal 10^5 K plasma that is optically thin at 100 GHz, or else a 10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.Comment: 10 page, 5 figures, accepted for publication in Astrophysical Journal Letter. The movie can be seen at the following link: http://hinode.nao.ac.jp/user/shimojo/data_area/plasmoid/movie5.mp

    Photoinduced magnetic bound state in itinerant correlated electron system with spin-state degree of freedom

    Full text link
    Photo-excited state in correlated electron system with spin-state degree of freedom is studied. We start from the two-orbital extended Hubbard model where energy difference between the two orbitals is introduced. Photo-excited metastable state is examined based on the effective model Hamiltonian derived by the two-orbital Hubbard model. Spin-state change is induced by photo-irradiation in the low-spin band insulator near the phase boundary. High-spin state is stabilized by creating a ferromagnetic bound state with photo-doped hole carriers. An optical absorption occurs between the bonding and antibonding orbitals inside of the bound state. Time-evolution for photo-excited states is simulated in the time-dependent mean-field scheme. Pair-annihilations of the photo-doped electron and hole generate the high-spin state in a low-spin band insulator. We propose that this process is directly observed by the time-resolved photoemission experiments.Comment: 15 pages, 16 figure

    Interrelationships Between Sensation Seeking and Psychopathy

    Get PDF
    Psychopathic and sensation seeking traits are often correlated; however, sensation seeking alone is not inherently pathological. This study seeks to investigate possible moderating variables between individuals who are high on sensation seeking but low on measures of psychopathic or antisocial traits. Specifically, a positive family environment is hypothesized to be a moderating variable in the development of psychopathic traits among high sensation seekers. A college student sample assessed for psychopathy, sensation seeking, and family functioning is used to test this hypothesis. Significant relationships between all three constructs were found. Similar to previous data, sensation seeking was found to correlate with many elements of psychopathy. Poor family environment was also associated with higher levels of psychopathy. Significant family environmental differences between those high in sensation seeking but low in psychopathy and those high in both sensation seeking and psychopathy were not found. Possible reasons and limitations of this study are explored

    Exact solutions of the isoholonomic problem and the optimal control problem in holonomic quantum computation

    Full text link
    The isoholonomic problem in a homogeneous bundle is formulated and solved exactly. The problem takes a form of a boundary value problem of a variational equation. The solution is applied to the optimal control problem in holonomic quantum computer. We provide a prescription to construct an optimal controller for an arbitrary unitary gate and apply it to a k k -dimensional unitary gate which operates on an N N -dimensional Hilbert space with N2k N \geq 2k . Our construction is applied to several important unitary gates such as the Hadamard gate, the CNOT gate, and the two-qubit discrete Fourier transformation gate. Controllers for these gates are explicitly constructed.Comment: 19 pages, no figures, LaTeX2

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse

    Full text link
    In order to study consequences of the differences between the ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional extended Peierls-Hubbard model with alternating potentials for the TTF-CA complex, we introduce a double pulse of oscillating electric field in the time-dependent Schr\"odinger equation and vary the interval between the two pulses as well as their strengths. When the dimerized ionic phase is photoexcited, the interference effect is clearly observed owing to the coherence of charge density and lattice displacements. Namely, the two pulses constructively interfere with each other if the interval is a multiple of the period of the optical lattice vibration, while they destructively interfere if the interval is a half-odd integer times the period, in the processes toward the neutral phase. The interference is strong especially when the pulse is strong and short because the coherence is also strong. Meanwhile, when the neutral phase is photoexcited, the interference effect is almost invisible or weakly observed when the pulse is weak. The photoinduced lattice oscillations are incoherent due to random phases. The strength of the interference caused by a double pulse is a key quantity to distinguish the two transitions and to evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure
    corecore