18,091 research outputs found
One for all, all for one---von Neumann, Wald, Rawls, and Pareto
Applications of the maximin criterion extend beyond economics to statistics,
computer science, politics, and operations research. However, the maximin
criterion---be it von Neumann's, Wald's, or Rawls'---draws fierce criticism due
to its extremely pessimistic stance. I propose a novel concept, dubbed the
optimin criterion, which is based on (Pareto) optimizing the worst-case payoffs
of tacit agreements. The optimin criterion generalizes and unifies results in
various fields: It not only coincides with (i) Wald's statistical
decision-making criterion when Nature is antagonistic, (ii) the core in
cooperative games when the core is nonempty, though it exists even if the core
is empty, but it also generalizes (iii) Nash equilibrium in -person
constant-sum games, (iv) stable matchings in matching models, and (v)
competitive equilibrium in the Arrow-Debreu economy. Moreover, every Nash
equilibrium satisfies the optimin criterion in an auxiliary game
Influence of Rayleigh-Doppler broadening on the selection of H2O dial system parameters
Computer simulations have enabled the performance of a H2O Differential Absorption Lidar (DIAL) system to be studied by spectrally analyzing the forward propagating and backscattered laser energy. The simulations were done for a high altitude (21 km) DIAL system operating in a nadir-viewing mode. The influence of Rayleigh Doppler broadening on DIAL measurement accuracies were evaluated and show that the Rayleigh broadening influence, which can be corrected to first order in regions free of large aerosol gradients, reduces the sensitivity of DIAL H2O measurement errors in the upper tropospheric region. The ability to correct the Rayleigh broadening and the selection of H2O DIAL parameters when all the systematic effects are combined, were discussed
Modelling the Effects of Friction on Tool-Chip Interface Temperature During Orthogonal Cutting of Al6061-T6 Aluminium Alloy
© IEOM Society International - IEOM 2019In this work, finite element simulations based on the analytical model derived with the MATLAB software were used to establish the temperature fields within the cutting tool and tool-chip interface. The average tool-chip interface temperature model was simulated and the simulation results were compared with experimental results for validation. At a maximum cutting speed of 90 m/min, the maximum temperature obtained from the experiment was 410 oC, at same rake angle of 0o. However, the developed model predicted 490 oC under the same conditions. The higher value obtained by the model can be attributed to the negligence of heat losses to the surrounding by both convection and radiation modes, as an assumption in the formulated model. A similar trend of these results was also recorded for the case of rake angle and feed rate of 30o and 0.0635 mm/rev, respectively. It was observed that the simulation results and experimental measurements for the average tool-chip interface temperature agreed significantly.Final Published versio
Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle
We derive raising and lowering operators for orthogonal polynomials on the
unit circle and find second order differential and -difference equations for
these polynomials. A general functional equation is found which allows one to
relate the zeros of the orthogonal polynomials to the stationary values of an
explicit quasi-energy and implies recurrences on the orthogonal polynomial
coefficients. We also evaluate the discriminants and quantized discriminants of
polynomials orthogonal on the unit circle.Comment: 27 pages, Latex2e plus AMS packages Fix to Eqs. (2.72) and (2.74
Effect of Gr Contents on Wear Properties of Al2024/MgO/Al2O3/Gr Hybrid Composites
In the present study, hybrid metal matrix composites, Al2024/10Al2O3, Al2024/10Al2O3/3MgO, Al2024/10Al2O3/6MgO, Al2024/10Al2O3/3MgO/1.5 Gr, Al2024/10Al2O3/3MgO/3Gr, and reinforcement samples (AA 2024) produced with powder metallurgy process. AA 2024 and reinforcement powders were determined mixture rations and separately mixed during 30 minutes in a three-dimensional Turbula mixer. The mixed compositions were pressed at 300 MPa and sintered at 550°C during 1 h. After that, three materials were extruded at the same temperature. Experimental results show that hybrid metal matrix composites (HMMCs) a better wear resistance than the reinforcement samples because of higher hardness. Gr behave as a lubricant during wear process. The wear resistance of HMMCs can be optimized with controlling of the reinforcement content and type. © 2018 The Authors
- …