45 research outputs found

    High-energy atmospheric neutrinos

    Full text link
    High-energy neutrinos, arising from decays of mesons that were produced through the cosmic rays collisions with air nuclei, form unavoidable background noise in the astrophysical neutrino detection problem. The atmospheric neutrino flux above 1 PeV should be supposedly dominated by the contribution of charmed particle decays. These (prompt) neutrinos originated from decays of massive and shortlived particles, D±D^\pm, D0D^0, Dˉ0\bar{D}{}^0, Ds±D_s^\pm, Λc+\Lambda^+_c, form the most uncertain fraction of the high-energy atmospheric neutrino flux because of poor explored processes of the charm production. Besides, an ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. There is the energy region where above flux uncertainties superimpose. A new calculation presented here reveals sizable differences, up to the factor of 1.8 above 1 TeV, in muon neutrino flux predictions obtained with usage of known hadronic models, SIBYLL 2.1 and QGSJET-II. The atmospheric neutrino flux in the energy range 10−10710-10^7 GeV was computed within the 1D approach to solve nuclear cascade equations in the atmosphere, which takes into account non-scaling behavior of the inclusive cross-sections for the particle production, the rise of total inelastic hadron-nucleus cross-sections and nonpower-law character of the primary cosmic ray spectrum. This approach was recently tested in the atmospheric muon flux calculations [1]. The results of the neutrino flux calculations are compared with the Frejus, AMANDA-II and IceCube measurement data.Comment: Poster presented at XVI International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2010), Batavia, IL, USA (28 June - 2 July 2010); 4 pages, 4 figure

    Charged lepton-nucleus inelastic scattering at high energies

    Full text link
    The composite model is constructed to describe inelastic high-energy scattering of muons and taus in standard rock. It involves photonuclear interactions at low Q2Q^2 as well as moderate Q2Q^2 processes and the deep inelastic scattering (DIS). In the DIS region the neutral current contribution is taken into consideration. Approximation formulas both for the muons and tau energy loss in standard rock are presented for wide energy range.Comment: 5 pages, 4 figures. Presented at 19th European Cosmic Ray Symposium (ECRS 2004), Florence, Italy, 30 Aug - 3 Sep 2004. Submitted to Int.J.Mod.Phys.

    Prompt atmospheric neutrinos in the quark-gluon string model

    Full text link
    We calculate the atmospheric flux of prompt neutrinos, produced in decays of the charmed particles at energies beyond 1 TeV. Cross sections of the DD-mesons and Λc+{\Lambda}^{+}_{c} baryons production in pA and π\piA collisions are calculated in the phenomenological quark-gluon string model (QGSM) which is updated using of the recent measurements of cross sections of the charmed meson production in the LHC experiments. A new estimate of the prompt atmospheric neutrino flux is obtained and compared with the limit of the IceCube experiment as well as with predictions of other charm production models.Comment: 15 pages, 18 figures; corrected text and figures, added reference
    corecore