29 research outputs found
A Universal Machine for Biform Theory Graphs
Broadly speaking, there are two kinds of semantics-aware assistant systems
for mathematics: proof assistants express the semantic in logic and emphasize
deduction, and computer algebra systems express the semantics in programming
languages and emphasize computation. Combining the complementary strengths of
both approaches while mending their complementary weaknesses has been an
important goal of the mechanized mathematics community for some time. We pick
up on the idea of biform theories and interpret it in the MMTt/OMDoc framework
which introduced the foundations-as-theories approach, and can thus represent
both logics and programming languages as theories. This yields a formal,
modular framework of biform theory graphs which mixes specifications and
implementations sharing the module system and typing information. We present
automated knowledge management work flows that interface to existing
specification/programming tools and enable an OpenMath Machine, that
operationalizes biform theories, evaluating expressions by exhaustively
applying the implementations of the respective operators. We evaluate the new
biform framework by adding implementations to the OpenMath standard content
dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final
publication is available at http://link.springer.com
Mathematical models as research data via flexiformal theory graphs
Mathematical modeling and simulation (MMS) has now been established as an essential part
of the scientific work in many disciplines. It is common to categorize the involved
numerical data and to some extent the corresponding scientific software as research
data. But both have their origin in mathematical models, therefore any holistic approach
to research data in MMS should cover all three aspects: data, software, and
models. While the problems of classifying, archiving and making accessible are largely
solved for data and first frameworks and systems are emerging for software, the question
of how to deal with mathematical models is completely open.
In this paper we propose a solution -- to cover all aspects of mathematical models: the
underlying mathematical knowledge, the equations, boundary conditions, numeric
approximations, and documents in a flexi\-formal framework, which has enough structure to
support the various uses of models in scientific and technology workflows.
Concretely we propose to use the OMDoc/MMT framework to formalize mathematical models
and show the adequacy of this approach by modeling a simple, but non-trivial model: van
Roosbroeck's drift-diffusion model for one-dimensional devices. This formalization -- and
future extensions -- allows us to support the modeler by e.g. flexibly composing models,
visualizing Model Pathway Diagrams, and annotating model equations in documents as
induced from the formalized documents by flattening. This directly solves some of the
problems in treating MMS as "research data'' and opens the way towards more MKM
services for models
Corrigendum to âCarbonate delta drift: A new sediment drift typeâ [Mar. Geol. 401 (2018) 98â111]
The authors regret the mistake in the drawing of the delta drift architecture in figure 11. The authors would like to apologise for any inconvenience caused. [Figure presented
The abrupt onset of the modern South Asian Monsoon winds
The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9âMa indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25âMa, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system
Correction to:A two million year record of low-latitude aridity linked to continental weathering from the Maldives (Progress in Earth and Planetary Science, (2018), 5, 1, (86), 10.1186/s40645-018-0238-x)
In the original version of this article (Kunkelova et al. 2018), published on 18 December 2018, there was 1 error in the author name of Dr. Yu
A two million year record of low-latitude aridity linked to continental weathering from the Maldives
Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earthâs orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/K cycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100Â kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25Â Ma in tandem with the global ice volume benthic ÎŽ 18 O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130Â kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100Â kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition. The Correction to this article has been published in Progress in Earth and Planetary Science 2019 6:21 - https://doi.org/10.1186/s40645-019-0259-
A two million year record of low-latitude aridity linked to continental weathering from the Maldives
Tem uma correção em http://hdl.handle.net/10400.1/12390Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earthâs orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/Kâcycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100 kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25 Ma in tandem with the global ice volume benthic ÎŽ18O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130 kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100 kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition.SFRH/BPD/96960/2013; PTDC/MAR-PRO/3396/2014info:eu-repo/semantics/publishedVersio