2,981 research outputs found

    Strong valence fluctuation in the quantum critical heavy fermion superconductor beta-YbAlB4: A hard x-ray photoemission study

    Full text link
    Electronic structures of the quantum critical superconductor beta-YbAlB4 and its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in beta-YbAlB4.Comment: 4 pages, 3 figures, revised version accepted for publication in PR

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure

    Modeling and simulation of pressure waves generated by nano-thermite reactions

    Get PDF
    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories

    Fluid–structure interaction design of insect–like micro flapping wing

    Get PDF
    In this study, a FSI design of an insect–like micro flapping wing is proposed. Similar to actual insects, the proposed design actively uses the FSI to create the passive wing motions. Each design solution has a 2.5–D structure for the MEMS technology. The 3–D unsteady monolithic FSI equation system is solved to find the satisfactory design solutions using a projection method in a parallel computation environment. An area of satisfactory design solutions in a design parameter space or Design Window (DW) is presented. Each design solution in the present DW can generate the thrust sufficient to support the weight of the model insect. Therefore, the insect–like MEMS–based MAVs are possible

    Measurement of K^+ \to \pi^0 \mu^+ \nu \gamma decay using stopped kaons

    Full text link
    The K^+ \to \pi^0 \mu^+ \nu \gamma (Kμ3γK_{\mu 3 \gamma}) decay has been measured with stopped positive kaons at the KEK 12 GeV proton synchrotron. A Kμ3γK_{\mu 3 \gamma} sample containing 125 events was obtained. The partial branching ratio Br(Kμ3γ,Eγ>30MeV,θμ+γ>20)Br(K_{\mu 3 \gamma}, E_{\gamma}>30 {\rm MeV}, \theta_{\mu^+ \gamma}>20^{\circ}) was found to be [2.4±0.5(stat)±0.6(syst)]×105[2.4 \pm 0.5(stat) \pm 0.6(syst)]\times 10^{-5}, which is in good agreement with theoretical predictions.Comment: 12 pages, 3 figures, to be published in Physics Letters

    Fluid dynamic modeling of nano-thermite reactions

    Get PDF
    This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor

    Measurement of direct photon emission in K+π+π0γK^+ \to \pi^+ \pi^0 \gamma decay using stopped positive kaons

    Full text link
    The radiative decay K+π+π0γK^+ \to \pi^+ \pi^0 \gamma (Kπ2γK_{\pi 2 \gamma}) has been measured with stopped positive kaons. A Kπ2γK_{\pi 2 \gamma} sample containing 4k events was analyzed, and the Kπ2γK_{\pi 2 \gamma} branching ratio of the direct photon emission process was determined to be [6.1±2.5(stat)±1.9(syst)]×106[6.1\pm2.5({\rm stat})\pm1.9({\rm syst})]\times 10^{-6}. No interference pattern with internal bremsstrahlung was observed.Comment: 12 pages, 6 figures, 2 tables, to be published in Phys. Lett.

    Spectrum of Disorders Associated with Elevated Serum IgG4 Levels Encountered in Clinical Practice

    Get PDF
    IgG4-related disease (IgG4-RD) is a recently described systemic fibroinflammatory disease associated with elevated circulating levels of IgG4 and manifests a wide spectrum of clinical presentations. Although serum IgG4 level has been described to be the most sensitive and specific laboratory test for the diagnosis of IgG4-RD, it is recognized that an elevated serum IgG4 level can be encountered in other diseases. In this study, we sought to identify the frequency of IgG4-RD and other disease associations in patients with elevated serum IgG4 levels seen in clinical practice. Among 3,300 patients who underwent IgG subclass testing over a 2-year period from January 2009 to December 2010, 158 (4.8%) had an elevated serum IgG4 level (>140 mg/dL). IgG4 subclass testing was performed for evaluation of suspected IgG4-RD or immunodeficiency. Twenty-nine patients (18.4%) had definite or possible IgG4-RD. Among those patients without IgG4-RD, a broad spectrum of biliary tract, pancreatic, liver, and lung diseases, as well as systemic vasculitis, was diagnosed. We conclude that patients with elevated serum IgG4 levels encountered in clinical practice manifest a wide array of disorders, and only a small minority of them has IgG4-RD
    corecore