45 research outputs found

    Treatment variation in stent choice in patients with stable or unstable coronary artery disease

    Get PDF
    Aim: Variations in treatment are the result of differences in demographic and clinical factors (e.g. anatomy), but physician and hospital factors may also contribute to treatment variation. The choice of treatment is considered important since it could lead to differences in long-term outcomes. This study explores the associations with stent choice: i.e. drug-eluting stent (DES) versus bare-metal stents (BMS) for Dutch patients diagnosed with stable or unstable coronary artery disease (CAD). Methods & results: Associations with treatment decisions were based on a prospective cohort of 692 patients with stable or unstable CAD. Of those patients, 442 patients were treated with BMS or DES. Multiple logistic regression analyses were performed to identify variables associated with stent choice. Bivariate analyses showed that NYHA class, number of diseased vessels, previous percutaneous coronary intervention, smoking, diabetes, and the treating hospital were associated with stent type. After correcting for other associations the treating hospital remained significantly associated with stent type in the stable CAD population. Conclusions: This study showed that several factors were associated with stent choice. While patients generally appear to receive the most optimal stent given their clinical characteristics, stent choice seems partially determined by the treating hospital, which may lead to differences in longterm outcome

    Optimization and validation of a micellar electrokinetic chromatographic method for the analysis of several angiotensin-II-receptor antagonists

    Full text link
    We have optimized a micellar electrokinetic capillary chromatographic method for the separation of six angiotensin-II-receptor antagonists (ARA-IIs): candesartan, eprosartan mesylate, irbesartan, losartan potassium, telmisartan, and valsartan. A face-centred central composite design was applied to study the effect of the pH, the molarity of the running buffer, and the concentration of the micelle-forming agent on the separation properties. A combination of the studied parameters permitted the separation of the six ARA-IIs, which was best carried out using a 55-mM sodium phosphate buffer solution (pH 6.5) containing 15 mM of sodium dodecyl sulfate. The same system can also be applied for the quantitative determination of these compounds, but only for the more stable ARA-IIs (candesartan, eprosartan mesylate, losartan potassium, and valsartan). Some system parameters (linearity, precision, and accuracy) were validated</p

    Microemulsion liquid chromatographic method for characterisation of fosinopril sodium and fosinoprilat separation with chemometrical support

    Full text link
    The properties of the eluent are the essential factors governing the efficiency in the high-performance liquid chromatography (HPLC) method. A novel approach in retention modelling in the liquid chromatographic separation of fosinopril sodium and its degradation product, fosinoprilat, applying a microemulsion as the mobile phase, was used. The modifications of the mobile phase included the changes to the type of the lipophilic phase, the type and concentration of co-surfactant and surfactant, as well as the pH of the mobile phase. In this study, a full factorial 2(3) design, as the optimal method for screening of the experiment, was applied for selecting factors which had an influence on separation. Optimisation was done by a central composite design. An appropriate resolution with reasonable retention times was obtained with a microemulsion containing 0.9% w/w of cyclohexane, 2.2% w/w of sodium dodecyl sulphate (SDS), 8.0% w/w of n-butanol and 88.9% of aqueous 25 mM disodium phosphate, the pH of which was adjusted to 2.8 with 85% orthophosphoric acid. Separations were performed on an X-Terra 50-mmx4.6-mm, 3.5- mu m particle size column at 30 degrees C. UV detection was performed at 220 nm and with a flow rate of 0.3 mL min(-1). The established method was validated and applied for analysis of appropriate tablets. The proposed chromatographic procedure for the separation of fosinopril sodium and its degradation product is less expensive compared with the conventional reversed-phase HPLC method, as well as being simple and rapid. The optimised and validated method can be used for separation, identification and simultaneous determination of fosinopfil sodium and fosinoprilat in bulk drug and in pharmaceutical dose forms
    corecore