163 research outputs found
Efficient Certified Resolution Proof Checking
We present a novel propositional proof tracing format that eliminates complex
processing, thus enabling efficient (formal) proof checking. The benefits of
this format are demonstrated by implementing a proof checker in C, which
outperforms a state-of-the-art checker by two orders of magnitude. We then
formalize the theory underlying propositional proof checking in Coq, and
extract a correct-by-construction proof checker for our format from the
formalization. An empirical evaluation using 280 unsatisfiable instances from
the 2015 and 2016 SAT competitions shows that this certified checker usually
performs comparably to a state-of-the-art non-certified proof checker. Using
this format, we formally verify the recent 200 TB proof of the Boolean
Pythagorean Triples conjecture
Encoding Redundancy for Satisfaction-Driven Clause Learning
Satisfaction-Driven Clause Learning (SDCL) is a recent SAT
solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems
On QBF Proofs and Preprocessing
QBFs (quantified boolean formulas), which are a superset of propositional
formulas, provide a canonical representation for PSPACE problems. To overcome
the inherent complexity of QBF, significant effort has been invested in
developing QBF solvers as well as the underlying proof systems. At the same
time, formula preprocessing is crucial for the application of QBF solvers. This
paper focuses on a missing link in currently-available technology: How to
obtain a certificate (e.g. proof) for a formula that had been preprocessed
before it was given to a solver? The paper targets a suite of commonly-used
preprocessing techniques and shows how to reconstruct certificates for them. On
the negative side, the paper discusses certain limitations of the
currently-used proof systems in the light of preprocessing. The presented
techniques were implemented and evaluated in the state-of-the-art QBF
preprocessor bloqqer.Comment: LPAR 201
Automating Deductive Verification for Weak-Memory Programs
Writing correct programs for weak memory models such as the C11 memory model
is challenging because of the weak consistency guarantees these models provide.
The first program logics for the verification of such programs have recently
been proposed, but their usage has been limited thus far to manual proofs.
Automating proofs in these logics via first-order solvers is non-trivial, due
to reasoning features such as higher-order assertions, modalities and rich
permission resources. In this paper, we provide the first implementation of a
weak memory program logic using existing deductive verification tools. We
tackle three recent program logics: Relaxed Separation Logic and two forms of
Fenced Separation Logic, and show how these can be encoded using the Viper
verification infrastructure. In doing so, we illustrate several novel encoding
techniques which could be employed for other logics. Our work is implemented,
and has been evaluated on examples from existing papers as well as the Facebook
open-source Folly library.Comment: Extended version of TACAS 2018 publicatio
An adaptive prefix-assignment technique for symmetry reduction
This paper presents a technique for symmetry reduction that adaptively
assigns a prefix of variables in a system of constraints so that the generated
prefix-assignments are pairwise nonisomorphic under the action of the symmetry
group of the system. The technique is based on McKay's canonical extension
framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the
technique are (i) adaptability---the prefix sequence can be user-prescribed and
truncated for compatibility with the group of symmetries; (ii)
parallelizability---prefix-assignments can be processed in parallel
independently of each other; (iii) versatility---the method is applicable
whenever the group of symmetries can be concisely represented as the
automorphism group of a vertex-colored graph; and (iv) implementability---the
method can be implemented relying on a canonical labeling map for
vertex-colored graphs as the only nontrivial subroutine. To demonstrate the
practical applicability of our technique, we have prepared an experimental
open-source implementation of the technique and carry out a set of experiments
that demonstrate ability to reduce symmetry on hard instances. Furthermore, we
demonstrate that the implementation effectively parallelizes to compute
clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie
Preprocessing Argumentation Frameworks via Replacement Patterns
A fast-growing research direction in the study of formal argumentation is the development of practical systems for central reasoning problems underlying argumentation. In particular, numerous systems for abstract argumentation frameworks (AF solvers) are available today, covering several argumentation semantics and reasoning tasks. Instead of proposing another algorithmic approach for AF solving, we introduce in this paper distinct AF preprocessing techniques as a solver-independent approach to obtaining performance improvements of AF solvers. We establish a formal framework of replacement patterns to perform local simplifications that are faithful with respect to standard semantics for AFs. Moreover, we provide a collection of concrete replacement patterns. Towards potential applicability, we employ the patterns in a preliminary empirical evaluation of their influence on AF solver performance.Peer reviewe
Lifting QBF Resolution Calculi to DQBF
We examine the existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and likewise universal resolution are too weak: they are not complete. IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolutio
Learning Moore Machines from Input-Output Traces
The problem of learning automata from example traces (but no equivalence or
membership queries) is fundamental in automata learning theory and practice. In
this paper we study this problem for finite state machines with inputs and
outputs, and in particular for Moore machines. We develop three algorithms for
solving this problem: (1) the PTAP algorithm, which transforms a set of
input-output traces into an incomplete Moore machine and then completes the
machine with self-loops; (2) the PRPNI algorithm, which uses the well-known
RPNI algorithm for automata learning to learn a product of automata encoding a
Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore
machine using PTAP extended with state merging. We prove that MooreMI has the
fundamental identification in the limit property. We also compare the
algorithms experimentally in terms of the size of the learned machine and
several notions of accuracy, introduced in this paper. Finally, we compare with
OSTIA, an algorithm that learns a more general class of transducers, and find
that OSTIA generally does not learn a Moore machine, even when fed with a
characteristic sample
Diffuse reflection of ultracold neutrons from low-roughness surfaces
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w , obtained by fitting the micro-roughness model to the data are in the range 1 b 3 nm and 10 w 120 nm, in qualitative agreement with independent measurements using atomic force microscop
Building Strategies into QBF Proofs
Strategy extraction is of great importance for quantified Boolean formulas (QBF), both in solving and proof complexity. So far in the QBF literature, strategy extraction has been algorithmically performed from proofs. Here we devise the first QBF system where (partial) strategies are built into the proof and are piecewise constructed by simple operations along with the derivation. This has several advantages: (1) lines of our calculus have a clear semantic meaning as they are accompanied by semantic objects; (2) partial strategies are represented succinctly (in contrast to some previous approaches); (3) our calculus has strategy extraction by design; and (4) the partial strategies allow new sound inference steps which are disallowed in previous central QBF calculi such as Q-Resolution and long-distance Q-Resolution. The last item (4) allows us to show an exponential separation between our new system and the previously studied reductionless long-distance resolution calculus. Our approach also naturally lifts to dependency QBFs (DQBF), where it yields the first sound and complete CDCL-style calculus for DQBF, thus opening future avenues into CDCL-based DQBF solving
- …