163 research outputs found

    Efficient Certified Resolution Proof Checking

    Get PDF
    We present a novel propositional proof tracing format that eliminates complex processing, thus enabling efficient (formal) proof checking. The benefits of this format are demonstrated by implementing a proof checker in C, which outperforms a state-of-the-art checker by two orders of magnitude. We then formalize the theory underlying propositional proof checking in Coq, and extract a correct-by-construction proof checker for our format from the formalization. An empirical evaluation using 280 unsatisfiable instances from the 2015 and 2016 SAT competitions shows that this certified checker usually performs comparably to a state-of-the-art non-certified proof checker. Using this format, we formally verify the recent 200 TB proof of the Boolean Pythagorean Triples conjecture

    Encoding Redundancy for Satisfaction-Driven Clause Learning

    Get PDF
    Satisfaction-Driven Clause Learning (SDCL) is a recent SAT solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    Automating Deductive Verification for Weak-Memory Programs

    Full text link
    Writing correct programs for weak memory models such as the C11 memory model is challenging because of the weak consistency guarantees these models provide. The first program logics for the verification of such programs have recently been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order solvers is non-trivial, due to reasoning features such as higher-order assertions, modalities and rich permission resources. In this paper, we provide the first implementation of a weak memory program logic using existing deductive verification tools. We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing papers as well as the Facebook open-source Folly library.Comment: Extended version of TACAS 2018 publicatio

    An adaptive prefix-assignment technique for symmetry reduction

    Full text link
    This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay's canonical extension framework [J.~Algorithms 26 (1998), no.~2, 306--324]. Among key features of the technique are (i) adaptability---the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelizability---prefix-assignments can be processed in parallel independently of each other; (iii) versatility---the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability---the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the practical applicability of our technique, we have prepared an experimental open-source implementation of the technique and carry out a set of experiments that demonstrate ability to reduce symmetry on hard instances. Furthermore, we demonstrate that the implementation effectively parallelizes to compute clusters with multiple nodes via a message-passing interface.Comment: Updated manuscript submitted for revie

    Preprocessing Argumentation Frameworks via Replacement Patterns

    Get PDF
    A fast-growing research direction in the study of formal argumentation is the development of practical systems for central reasoning problems underlying argumentation. In particular, numerous systems for abstract argumentation frameworks (AF solvers) are available today, covering several argumentation semantics and reasoning tasks. Instead of proposing another algorithmic approach for AF solving, we introduce in this paper distinct AF preprocessing techniques as a solver-independent approach to obtaining performance improvements of AF solvers. We establish a formal framework of replacement patterns to perform local simplifications that are faithful with respect to standard semantics for AFs. Moreover, we provide a collection of concrete replacement patterns. Towards potential applicability, we employ the patterns in a preliminary empirical evaluation of their influence on AF solver performance.Peer reviewe

    Lifting QBF Resolution Calculi to DQBF

    Get PDF
    We examine the existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems Q-Res < IR-calc < IRM-calc, the situation is quite different in DQBF. Q-Res and likewise universal resolution are too weak: they are not complete. IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to EPR and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolutio

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    Diffuse reflection of ultracold neutrons from low-roughness surfaces

    Get PDF
    We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w , obtained by fitting the micro-roughness model to the data are in the range 1 \le b \le3 nm and 10 \le w \le120 nm, in qualitative agreement with independent measurements using atomic force microscop

    Building Strategies into QBF Proofs

    Get PDF
    Strategy extraction is of great importance for quantified Boolean formulas (QBF), both in solving and proof complexity. So far in the QBF literature, strategy extraction has been algorithmically performed from proofs. Here we devise the first QBF system where (partial) strategies are built into the proof and are piecewise constructed by simple operations along with the derivation. This has several advantages: (1) lines of our calculus have a clear semantic meaning as they are accompanied by semantic objects; (2) partial strategies are represented succinctly (in contrast to some previous approaches); (3) our calculus has strategy extraction by design; and (4) the partial strategies allow new sound inference steps which are disallowed in previous central QBF calculi such as Q-Resolution and long-distance Q-Resolution. The last item (4) allows us to show an exponential separation between our new system and the previously studied reductionless long-distance resolution calculus. Our approach also naturally lifts to dependency QBFs (DQBF), where it yields the first sound and complete CDCL-style calculus for DQBF, thus opening future avenues into CDCL-based DQBF solving
    corecore