243 research outputs found

    Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival

    Get PDF
    Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography–mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours

    The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer

    Get PDF
    International audienceHeparan sulfate (HS) proteoglycan chains are key components of the breast tumor microenvironment that critically influence the behavior of cancer cells. It is established that abnormal synthesis and processing of HS play a prominent role in tumorigenesis, albeit mechanisms remain mostly obscure. HS function is mainly controlled by sulfotransferases, and here we report a novel cellular and pathophysiological significance for the 3-O-sulfotransferase 3-OST3A (HS3ST3A), catalyzing the final maturation step of HS, in breast cancer. We show that 3-OST3A is epigenetically repressed in all breast cancer cell lines of a panel representative of distinct molecular subgroups, except in human epidermal growth factor receptor 2-positive (HER2+) sloan-kettering breast cancer (SKBR3) cells. Epigenetic mechanisms involved both DNA methylation and histone modifications, producing different repressive chromatin environments depending on the cell molecular signature. Gain and loss of function experiments by cDNA and siRNA transfection revealed profound effects of 3-OST3A expression on cell behavior including apoptosis, proliferation, response to trastuzumab in vitro and tumor growth in xenografted mice. 3-OST3A exerted dual activities acting as tumor-suppressor in lumA-michigan cancer foundation (MCF)-7 and triple negative-MD Anderson (MDA) metastatic breast (MB)-231 cells, or as an oncogenic factor in HER2+-SKBR3 cells. Mechanistically, fluorescence-resonance energy transfer-fluorescence-lifetime imaging microscopy experiments indicated that the effects of 3-OST3A in MCF-7 cells were mediated by altered interactions between HS and fibroblast growth factor-7 (FGF-7). Further, this interplay between HS and FGF-7 modulated downstream ERK, AKT and p38 cascades, suggesting that altering 3-O-sulfation affects FGFR2IIIb-mediated signaling. Corroborating our cellular data, a clinical study conducted in a cohort of breast cancer patients uncovered that, in HER2+ patients, high level expression of 3-OST3A in tumors was associated with reduced relapse-free survival. Our findings define 3-OST3A as a novel regulator of breast cancer pathogenicity, displaying tumor-suppressive or oncogenic activities in a cell-and tumor-dependent context, and demonstrate the clinical value of the HS-O-sulfotransferase 3-OST3A as a prognostic marker in HER2+ patients

    Systemic and Mucosal Immune Responses to Sublingual or Intramuscular Human Papilloma Virus Antigens in Healthy Female Volunteers

    Get PDF
    The sublingual route has been proposed as a needle-free option to induce systemic and mucosal immune protection against viral infections. In a translational study of systemic and mucosal humoral immune responses to sublingual or systemically administered viral antigens, eighteen healthy female volunteers aged 19–31 years received three immunizations with a quadravalent Human Papilloma Virus vaccine at 0, 4 and 16 weeks as sublingual drops (SL, n = 12) or intramuscular injection (IM, n = 6). IM antigen delivery induced or boosted HPV-specific serum IgG and pseudovirus-neutralizing antibodies, HPV-specific cervical and vaginal IgG, and elicited circulating IgG and IgA antibody secreting cells. SL antigens induced ∼38-fold lower serum and ∼2-fold lower cervical/vaginal IgG than IM delivery, and induced or boosted serum virus neutralizing antibody in only 3/12 subjects. Neither route reproducibly induced HPV-specific mucosal IgA. Alternative delivery systems and adjuvants will be required to enhance and evaluate immune responses following sublingual immunization in humans

    Quantitative Proteomics Identifies the Myb-Binding Protein p160 as a Novel Target of the von Hippel-Lindau Tumor Suppressor

    Get PDF
    Background: The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex, which is best understood as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the a subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. However, several lines of evidence suggest that there are unidentified substrates or targets for VHL that play important roles in tumor suppression. Methodology/Principal Findings: Employing quantitative proteomics, we developed an approach to systematically identify the substrates of ubiquitin ligases and using this method, we identified the Myb-binding protein p160 as a novel substrate of VHL. Conclusions/Significance: A major barrier to understanding the functions of ubiquitin ligases has been the difficulty in pinpointing their ubiquitination substrates. The quantitative proteomics approach we devised for the identification of VHL substrates will be widely applicable to other ubiquitin ligases

    The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken

    Get PDF
    Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.We thank Prof. Miguel Lafarga for helpful comments and advice. We thank Dr Jose E Gomez-Arozamena for helping us with the irradiation experiments. We are grateful to Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017–84046-P) from the Spanish Science and Innovation Ministry to JAM. C.S.F is recipient of a FPI grant (BES-2015–074267)

    Viral Protein Fragmentation May Broaden T-Cell Responses to HIV Vaccines

    Get PDF
    High mutation rates of human immunodeficiency virus (HIV) allows escape from T cell recognition preventing development of effective T cell vaccines. Vaccines that induce diverse T cell immune responses would help overcome this problem. Using SIV gag as a model vaccine, we investigated two approaches to increase the breadth of the CD8 T cell response. Namely, fusion of vaccine genes to ubiquitin to target the proteasome and increase levels of MHC class I peptide complexes and gene fragmentation to overcome competition between epitopes for presentation and recognition.three vaccines were compared: full-length unmodified SIV-mac239 gag, full-length gag fused at the N-terminus to ubiquitin and 7 gag fragments of equal size spanning the whole of gag with ubiquitin-fused to the N-terminus of each fragment. Genes were cloned into a replication defective adenovirus vector and immunogenicity assessed in an in vitro human priming system. The breadth of the CD8 T cell response, defined by the number of distinct epitopes, was assessed by IFN-γ-ELISPOT and memory phenotype and cytokine production evaluated by flow cytometry. We observed an increase of two- to six-fold in the number of epitopes recognised in the ubiquitin-fused fragments compared to the ubiquitin-fused full-length gag. In contrast, although proteasomal targeting was achieved, there was a marked reduction in the number of epitopes recognised in the ubiquitin-fused full-length gag compared to the full-length unmodified gene, but there were no differences in the number of epitope responses induced by non-ubiquitinated full-length gag and the ubiquitin-fused mini genes. Fragmentation and ubiquitination did not affect T cell memory differentiation and polyfunctionality, though most responses were directed against the Ad5 vector.Fragmentation but not fusion with ubiquitin increases the breadth of the CD8 T vaccine response against SIV-mac239 gag. Thus gene fragmentation of HIV vaccines may maximise responses
    • …
    corecore