815 research outputs found
South Africa: Using the Law to Establish and Maintain a Pigmentocracy
A Review of Human Rights and the South African Legal Order by John Dugar
Discovery of a Second Transient Low-Mass X-ray Binary in the Globular Cluster NGC 6440
We have identified a new transient luminous low-mass X-ray binary, NGC 6440
X-2, with Chandra/ACIS, RXTE/PCA, and Swift/XRT observations of the globular
cluster NGC 6440. The discovery outburst (July 28-31, 2009) peaked at
L_X~1.5*10^36 ergs/s, and lasted for <4 days above L_X=10^35 ergs/s. Four other
outbursts (May 29-June 4, Aug. 29-Sept. 1, Oct. 1-3, and Oct. 28-31 2009) have
been observed with RXTE/PCA (identifying millisecond pulsations, Altamirano et
al. 2009a) and Swift/XRT (confirming a positional association with NGC 6440
X-2), with similar peak luminosities and decay times. Optical and infrared
imaging did not detect a clear counterpart, with best limits of V>21, B>22 in
quiescence from archival HST imaging, g'>22 during the August outburst from
Gemini-South GMOS imaging, and J>~18.5$ and K>~17 during the July outburst from
CTIO 4-m ISPI imaging.
Archival Chandra X-ray images of the core do not detect the quiescent
counterpart, and place a bolometric luminosity limit of L_{NS}< 6*10^31 ergs/s
(one of the lowest measured) for a hydrogen atmosphere neutron star. A short
Chandra observation 10 days into quiescence found two photons at NGC 6440 X-2's
position, suggesting enhanced quiescent emission at L_X~6*10^31 ergs/s .
NGC 6440 X-2 currently shows the shortest recurrence time (~31 days) of any
known X-ray transient, although regular outbursts were not visible in the bulge
scans before early 2009. Fast, low-luminosity transients like NGC 6440 X-2 may
be easily missed by current X-ray monitoring.Comment: 13 pages (emulateapj), 8 (color) figures, ApJ in press. Revised
version adds 5th outburst (Oct./Nov. 2009), additional discussion of possible
causes of short outburst recurrence time
Evolution of the disc atmosphere in the X-ray binary MXB 1659-298, during its 2015-2017 outburst
We report on the evolution of the X-ray emission of the accreting neutron
star (NS) low mass X-ray binary (LMXB), MXB 1659-298, during its most recent
outburst in 2015-2017. We detected 60 absorption lines during the soft state
(of which 21 at more than 3 ), that disappeared in the hard state
(e.g., the Fe xxv and Fe xxvi lines). The absorbing plasma is at rest, likely
part of the accretion disc atmosphere. The bulk of the absorption features can
be reproduced by a high column density () of highly
ionised () plasma. Its disappearance during the
hard state is likely the consequence of a thermal photo-ionisation instability.
MXB 1659-298's continuum emission can be described by the sum of an absorbed
disk black body and its Comptonised emission, plus a black body component. The
observed spectral evolution with state is in line with that typically observed
in atoll and stellar mass black hole LMXB. The presence of a relativistic Fe
K disk-line is required during the soft state. We also tentatively
detect the Fe xxii doublet, whose ratio suggests an electron density of the
absorber of , hence, the absorber is likely located at
from the illuminating source, well inside the Compton and
outer disc radii. MXB 1659-298 is the third well monitored atoll LMXB
showcasing intense Fe xxv and Fe xxvi absorption during the soft state that
disappears during the hard state.Comment: MNRAS in pres
Limits on thermal variations in a dozen quiescent neutron stars over a decade
In quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the
origin of the thermal X-ray component may be either release of heat from the
core of the neutron star, or continuing low-level accretion. In general, heat
from the core should be stable on timescales years, while continuing
accretion may produce variations on a range of timescales. While some quiescent
neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal
components on a range of timescales, several others, particularly those in
globular clusters with no detectable nonthermal hard X-rays (fit with a
powerlaw), have shown no measurable variations. Here, we constrain the spectral
variations of 12 low mass X-ray binaries in 3 globular clusters over
years. We find no evidence of variations in 10 cases, with limits on
temperature variations below 11% for the 7 qLMXBs without powerlaw components,
and limits on variations below 20% for 3 other qLMXBs that do show non-thermal
emission. However, in 2 qLMXBs showing powerlaw components in their spectra
(NGC 6440 CX 1 & Terzan 5 CX 12) we find marginal evidence for a 10% decline in
temperature, suggesting the presence of continuing low-level accretion. This
work adds to the evidence that the thermal X-ray component in quiescent neutron
stars without powerlaw components can be explained by heat deposited in the
core during outbursts. Finally, we also investigate the correlation between
hydrogen column density (N) and optical extinction (A) using our sample
and current models of interstellar X-ray absorption, finding .Comment: 16 pages, 5 figures, MNRAS, in pres
- …