599 research outputs found

    Possible Superconductivity at 37 K in Graphite-Sulfur Composite

    Full text link
    Sulfur intercalated graphite composites with diamagnetic transitions at 6.7 K and 37 K are prepared. The magnetization hysteresis loops (MHL), Xray diffraction patterns, and resistance were measured. From the MHL, a slight superconducting like penetration process is observed at 15 K in low field region. The XRD shows no big difference from the mixture of graphite and sulfur indicating that the volume of the superconducting phase (if any) is very small. The temperature dependence of resistance shows a typical semiconducting behavior with a saturation in low temperature region. This saturation is either induced by the de-localization of conducting electrons or by possible superconductivity in this system.Comment: CHIN. PHYS.LETT v18 1648 (2001

    Strong quantum fluctuation of vortices in the new superconductor MgB2MgB_2

    Full text link
    By using transport and magnetic measurement, the upper critical field Hc2(T)H_{c2}(T) and the irreversibility line Hirr(T)H_{irr}(T) has been determined. A big separation between Hc2(0)H_{c2}(0) and Hirr(0)H_{irr}(0) has been found showing the existence of a quantum vortex liquid state induced by quantum fluctuation of vortices in the new superconductor MgB2MgB_2. Further investigation on the magnetic relaxation shows that both the quantum tunneling and the thermally activated flux creep weakly depends on temperature. But when the melting field HirrH_{irr} is approached, a drastic rising of the relaxation rate is observed. This may imply that the melting of the vortex matter at a finite temperature is also induced by the quantum fluctuation of vortices.Comment: 4 pages, 4 figure

    A Kiloparsec-Scale Binary Active Galactic Nucleus Confirmed by the Expanded Very Large Array

    Full text link
    We report the confirmation of a kpc-scale binary active galactic nucleus (AGN) with high-resolution radio images from the Expanded Very Large Array (EVLA). SDSS J150243.1+111557 is a double-peaked [O III] AGN at z = 0.39 selected from the Sloan Digital Sky Survey. Our previous near-infrared adaptive optics imaging reveals two nuclei separated by 1.4" (7.4 kpc), and our optical integral-field spectroscopy suggests that they are a type-1--type-2 AGN pair. However, these data alone cannot rule out the single AGN scenario where the narrow emission-line region associated with the secondary is photoionized by the broad-line AGN in the primary. Our new EVLA images at 1.4, 5.0, and 8.5 GHz show two steep-spectrum compact radio sources spatially coincident with the optical nuclei. The radio power of the type-2 AGN is an order-of-magnitude in excess of star-forming galaxies with similar extinction-corrected [O II] 3727 luminosities, indicating that the radio emission is powered by accretion. Therefore, SDSS J150243.1+111557 is one of the few confirmed kpc-scale binary AGN systems. Spectral-energy-distribution modeling shows that SDSS J150243.1+111557 is a merger of two ~10^{11} M_sun galaxies. With both black hole masses around 10^8 Msun, the AGNs are accreting at ~10 times below the Eddington limit.Comment: ApJL accepted. 6 pages, 3 figures, 1 tabl

    The effect of different baryons impurities

    Full text link
    We demonstrate the different effect of different baryons impurities on the static properties of nuclei within the framework of the relativistic mean-field model. Systematic calculations show that Λc+\Lambda_c^+ and Λb\Lambda_b has the same attracting role as Λ\Lambda hyperon does in lighter hypernuclei. Ξ−\Xi^- and Ξc0\Xi_c^0 hyperon has the attracting role only for the protons distribution, and has a repulsive role for the neutrons distribution. On the contrary, Ξ0\Xi^0 and Ξc+\Xi^+_c hyperon attracts surrounding neutrons and reveals a repulsive force to the protons. We find that the different effect of different baryons impurities on the nuclear core is due to the different third component of their isospin.Comment: 9 page

    Electronic specific heat and low energy quasiparticle excitations in superconducting state of La2−xSrxCuO4La_{2-x}Sr_xCuO_4 single crystals

    Full text link
    Low temperature specific heat has been measured and extensively analyzed on a series of La2−xSrxCuO4La_{2-x}Sr_xCuO_4 single crystals from underdoped to overdoped regime. From these data the quasiparticle density of states (DOS) in the mixed state is derived and compared to the predicted scaling law Cvol/TH=f(T/H)C_{vol}/T\sqrt{H}=f(T/\sqrt{H}) of d-wave superconductivity. It is found that the scaling law can be nicely followed by the optimally doped sample (x=0.15) in quite wide region of (T/H≀8K/TT/\sqrt{H} \leq 8 K /\sqrt{T}). However, the region for this scaling becomes smaller and smaller towards more underdoped region: a clear trend can be seen for samples from x=0.15 to 0.069. Therefore, generally speaking, the scaling quality becomes worse on the underdoped samples in terms of scalable region of T/HT/\sqrt{H}. This feature in the underdoped region is explained as due to the low energy excitations from a second order (for example, anti-ferromagnetic correlation, d-density wave, spin density wave or charge density wave order) that may co-exist or compete with superconductivity. Surprisingly, deviations from the d-wave scaling law have also been found for the overdoped sample (x=0.22). While the scaling law is reconciled for the overdoped sample when the core size effect is taken into account. An important discovery of present work is that the zero-temperature data follow the Volovik's relation Δγ(T=0)=AH\Delta \gamma(T=0)=A\sqrt{H} quite well for all samples investigated here although the applicability of the d-wave scaling law to the data at finite temperatures varies with doped hole concentration. Finally we present the doping dependence of some parameters, such as, the residual linear term Îł0\gamma_0, the α\alpha value, etc. ...Comment: 15 pages, 24 figure

    Rare Semileptonic Decays of Heavy Mesons with Flavor SU(3) Symmetry

    Full text link
    In this paper, we calculate the decay rates of D+→D0e+ÎœD^+ \to D^0 e^+ \nu, DS+→D0e+ÎœD^+_S \to D^0 e^+ \nu, BS0→B+e−ΜˉB^0_S \to B^+ e^- \bar{\nu}, DS+→D+e−e+D^+_S \to D^+ e^- e^+ and BS0→B0e−e+B^0_S \to B^0 e^-e^+ semileptonic decay processes, in which only the light quarks decay, while the heavy flavors remain unchanged. The branching ratios of these decay processes are calculated with the flavor SU(3) symmetry. The uncertainties are estimated by considering the SU(3) breaking effect. We find that the decay rates are very tiny in the framework of the Standard Model. We also estimate the sensitivities of the measurements of these rare decays at the future experiments, such as BES-III, super-BB and LHC-bb.Comment: 4 pages and 1 figure, accepted by European Physical Journal

    Spin-dependent thermoelectric transport through double quantum dots

    Full text link
    We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.Comment: 5 figure

    Noise does not equal bias in assessing the evolutionary history of the angiosperm flora of China: A response to Qian (2019)

    Full text link
    In response to our paper on the evolutionary history of the Chinese flora, Qian suggests that certain features of the divergence time estimation employed might have led to biased conclusions in Lu et al (2018). Here, we consider Qian’s specific criticisms, explore the extent of uncertainty in the data and demonstrate that (i) no systematic bias toward dates that are too young or too old is detected in Lu et al.; (ii) constraint of the crown age of angiosperms does not bias the generic ages estimated by Lu et al.; and (iii) ages derived from the Chinese regional phylogeny do not bias the conclusions reported by Lu et al. All these analyses confirm that the conclusions reported previously are robust. We argue that, like many large- scale biodiversity analyses, sources of noise in divergence time estimation are to be expected, but these should not be confused with bias.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163425/2/jbi13947.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163425/1/jbi13947_am.pd

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    • 

    corecore