959,696 research outputs found

    Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates

    Full text link
    The normal state single particle spectral function of the high temperature superconducting cuprates, measured by the angle resolved photoelectron spectroscopy (ARPES), has been considered both anomalous and crucial to understand. Here we show that an unprecedentedly detailed description of the data is provided by a spectral function arising from the Extremely Correlated Fermi Liquid state of the t-J model proposed recently by Shastry. The description encompasses both laser and conventional synchrotron ARPES data on optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, and also conventional synchrotron ARPES data on the La1.85_{1.85}Sr0.15_{0.15}CuO4_4 materials. {\em It fits all data sets with the same physical parameter values}, satisfies the particle sum rule and successfully addresses two widely discussed "kink" anomalies in the dispersion.Comment: Published version, 5 figs; published 29 July (2011

    Selection Wages and Discrimination

    Get PDF
    Applicants for any given job are more or less suited to fill it, and the firm will select the best among them. Increasing the wage offer attracts more applicants and makes it possible to raise the hiring standard and improve the productivity of the staff. Wages that optimize on the trade-off between the wage level and the productivity of the workforce are known as selection wages. As men react more strongly to wage differentials than females, the trade-off is more pronounced for men and a profit-maximizing firm will offer a higher wage for men than for women in equilibrium

    Energy transfer in binary collisions of two gyrating charged particles in a magnetic field

    Full text link
    Binary collisions of the gyrating charged particles in an external magnetic field are considered within a classical second-order perturbation theory, i.e., up to contributions which are quadratic in the binary interaction, starting from the unperturbed helical motion of the particles. The calculations are done with the help of a binary collisions treatment which is valid for any strength of the magnetic field and involves all harmonics of the particles cyclotron motion. The energy transfer is explicitly calculated for a regularized and screened potential which is both of finite range and nonsingular at the origin. The validity of the perturbation treatment is evaluated by comparing with classical trajectory Monte Carlo (CTMC) calculations which also allow to investigate the strong collisions with large energy and velocity transfer at low velocities. For large initial velocities on the other hand, only small velocity transfers occur. There the nonperturbative numerical CTMC results agree excellently with the predictions of the perturbative treatment.Comment: 12 pages, 4 figure

    Stabilizing the forming process in unipolar resistance switching using an improved compliance current limiter

    Full text link
    The high reset current IR in unipolar resistance switching now poses major obstacles to practical applications in memory devices. In particular, the first IR-value after the forming process is so high that the capacitors sometimes do not exhibit reliable unipolar resistance switching. We found that the compliance current Icomp is a critical parameter for reducing IR-values. We therefore introduced an improved, simple, easy to use Icomp-limiter that stabilizes the forming process by drastically decreasing current overflow, in order to precisely control the Icomp- and subsequent IR-values.Comment: 15 pages, 4 figure

    The wedding of modified dynamics and non-exotic dark matter in galaxy clusters

    Full text link
    We summarize the status of Modified Newtonian Dynamics (MOND) in galaxy clusters. The observed acceleration is typically larger than the acceleration threshold of MOND in the central regions, implying that some dark matter is necessary to explain the mass discrepancy there. A plausible resolution of this issue is that the unseen mass in MOND is in the form of ordinary neutrinos with masses just below the experimentally detectable limit. In particular, we show that the lensing mass reconstructions of the clusters 1E0657-56 (the bullet cluster) and Cl0024+17 (the ring) do not pose a new challenge to this scenario. However, the mass discrepancy for cool X-ray emitting groups, in which neutrinos cannot cluster, pose a more serious problem, meaning that dark baryons could present a more satisfactory solution to the problem of unseen mass in MOND clusters.Comment: to appear in World Scientific, proceedings of DARK 200
    corecore