2,279 research outputs found
Complete controllability of finite-level quantum systems
Complete controllability is a fundamental issue in the field of control of
quantum systems, not least because of its implications for dynamical
realizability of the kinematical bounds on the optimization of observables. In
this paper we investigate the question of complete controllability for
finite-level quantum systems subject to a single control field, for which the
interaction is of dipole form. Sufficient criteria for complete controllability
of a wide range of finite-level quantum systems are established and the
question of limits of complete controllability is addressed. Finally, the
results are applied to give a classification of complete controllability for
four-level systems.Comment: 14 pages, IoP-LaTe
Control of non-controllable quantum systems: A quantum control algorithm based on Grover iteration
A new notion of controllability, eigenstate controllability, is defined for
finite-dimensional bilinear quantum mechanical systems which are neither
strongly completely controllably nor completely controllable. And a quantum
control algorithm based on Grover iteration is designed to perform a quantum
control task of steering a system, which is eigenstate controllable but may not
be (strongly) completely controllable, from an arbitrary state to a target
state.Comment: 7 pages, no figures, submitte
Limits of control for quantum systems: kinematical bounds on the optimization of observables and the question of dynamical realizability
In this paper we investigate the limits of control for mixed-state quantum
systems. The constraint of unitary evolution for non-dissipative quantum
systems imposes kinematical bounds on the optimization of arbitrary
observables. We summarize our previous results on kinematical bounds and show
that these bounds are dynamically realizable for completely controllable
systems. Moreover, we establish improved bounds for certain partially
controllable systems. Finally, the question of dynamical realizability of the
bounds for arbitary partially controllable systems is shown to depend on the
accessible sets of the associated control system on the unitary group U(N) and
the results of a few control computations are discussed briefly.Comment: 5 pages, orginal June 30, 2000, revised September 28, 200
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
We consider how to characterize the dynamics of a quantum system from a
restricted set of initial states and measurements using Bayesian analysis.
Previous work has shown that Hamiltonian systems can be well estimated from
analysis of noisy data. Here we show how to generalize this approach to systems
with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the
process for a range of three-level quantum systems. The results suggest that
the Bayesian estimation of the frequencies and dephasing rates is generally
highly accurate and the main source of errors are errors in the reconstructed
Hamiltonian basis.Comment: 6 pages, 3 figure
Degrees of controllability for quantum systems and applications to atomic systems
Precise definitions for different degrees of controllability for quantum
systems are given, and necessary and sufficient conditions are discussed. The
results are applied to determine the degree of controllability for various
atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio
On the Contractivity of Hilbert-Schmidt distance under open system dynamics
We show that the Hilbert-Schmidt distance, unlike the trace distance, between
quantum states is generally not monotonic for open quantum systems subject to
Lindblad semigroup dynamics. Sufficient conditions for contractivity of the
Hilbert-Schmidt norm in terms of the dissipation generators are given. Although
these conditions are not necessary, simulations suggest that non-contractivity
is the typical case, i.e., that systems for which the Hilbert-Schmidt distance
between quantum states is monotonically decreasing form only a small set of all
possible dissipative systems for N>2, in contrast to the case N=2 where the
Hilbert-Schmidt distance is always monotonically decreasing.Comment: Major revision. We would particularly like to thank D Perez-Garcia
for constructive feedbac
Complete controllability of quantum systems
Sufficient conditions for complete controllability of -level quantum
systems subject to a single control pulse that addresses multiple allowed
transitions concurrently are established. The results are applied in particular
to Morse and harmonic-oscillator systems, as well as some systems with
degenerate energy levels. Morse and harmonic oscillators serve as models for
molecular bonds, and the standard control approach of using a sequence of
frequency-selective pulses to address a single transition at a time is either
not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio
Optimal Control of One-Qubit Gates
We consider the problem of carrying an initial Bloch vector to a final Bloch
vector in a specified amount of time under the action of three control fields
(a vector control field). We show that this control problem is solvable and
therefore it is possible to optimize the control. We choose the physically
motivated criteria of minimum energy spent in the control, minimum magnitude of
the rate of change of the control and a combination of both. We find exact
analytical solutions.Comment: 5 page
Clinical and functional characterisation of a novel TNFRSF1A c.605T > A/V173D cleavage site mutation associated with tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS), cardiovascular complications and excellent response to etanercept treatment.
Objectives: To study the clinical outcome, treatment
response, T-cell subsets and functional consequences of a
novel tumour necrosis factor (TNF) receptor type 1
(TNFRSF1A) mutation affecting the receptor
cleavage site.
Methods: Patients with symptoms suggestive of tumour
necrosis factor receptor-associated periodic syndrome
(TRAPS) and 22 healthy controls (HC) were screened for
mutations in the TNFRSF1A gene. Soluble TNFRSF1A and
inflammatory cytokines were measured by ELISAs.
TNFRSF1A shedding was examined by stimulation of
peripheral blood mononuclear cells (PBMCs) with phorbol
12-myristate 13-acetate followed by flow cytometric
analysis (FACS). Apoptosis of PBMCs was studied by
stimulation with TNFa in the presence of cycloheximide
and annexin V staining. T cell phenotypes were monitored
by FACS.
Results: TNFRSF1A sequencing disclosed a novel V173D/
p.Val202Asp substitution encoded by exon 6 in one
family, the c.194–14G.A splice variant in another and
the R92Q/p.Arg121Gln substitution in two families.
Cardiovascular complications (lethal heart attack and
peripheral arterial thrombosis) developed in two V173D
patients. Subsequent etanercept treatment of the V173D
carriers was highly effective over an 18-month follow-up
period. Serum TNFRSF1A levels did not differ between
TRAPS patients and HC, while TNFRSF1A cleavage from
monocytes was significantly reduced in V173D and R92Q
patients. TNFa-induced apoptosis of PBMCs and T-cell
senescence were comparable between V173D patients
and HC.
Conclusions: The TNFRSF1A V173D cleavage site
mutation may be associated with an increased risk for
cardiovascular complications and shows a strong
response to etanercept. T-cell senescence does not seem
to have a pathogenetic role in affected patients
- …