9,974 research outputs found
Chirality distribution and transition energies of carbon nanotubes
From resonant Raman scattering on isolated nanotubes we obtained the optical
transition energies, the radial breathing mode frequency and Raman intensity of
both metallic and semiconducting tubes. We unambiguously assigned the chiral
index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor
tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In
contrast to luminescence experiments we observe all chiralities including
zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence
confirming recent ab-initio calculations.Comment: 4 pages, to be published in Phys. Rev. Let
HI ``Tails'' from Cometary Globules in IC1396
IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized
by a single O6.5V star and containing bright-rimmed cometary globules. We have
made the first arcmin resolution images of atomic hydrogen toward IC 1396, and
have found remarkable ``tail''-like structures associated with some of the
globules and extending up to 6.5 pc radially away from the central ionizing
star. These HI ``tails'' may be material which has been ablated from the
globule through ionization and/or photodissociation and then accelerated away
from the globule by the stellar wind, but which has since drifted into the
``shadow'' of the globules.
This report presents the first results of the Galactic Plane Survey Project
recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in
uuencoded gzipped tar format, accepted for publication in Astrophysical
Journal Letters, colour figures available at
http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm
Fine Structure of the Radial Breathing Mode in Double-Wall Carbon Nanotubes
The analysis of the Raman scattering cross section of the radial breathing
modes of double-wall carbon nanotubes allowed to determine the optical
transitions of the inner tubes. The Raman lines are found to cluster into
species with similar resonance behavior. The lowest components of the clusters
correspond well to SDS wrapped HiPco tubes. Each cluster represents one
particular inner tube inside different outer tubes and each member of the
clusters represents one well defined pair of inner and outer tubes. The number
of components in one cluster increases with decreasing of the inner tube
diameter and can be as high as 14.Comment: 5 pages, 3 figure
The strength of the radial-breathing mode in single-walled carbon nanotubes
We show by ab initio calculations that the electron-phonon coupling matrix
element M of the radial breathing mode in single-walled carbon nanotubes
depends strongly on tube chirality. For nanotubes of the same diameter the
coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag
than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3,
which allows to discriminate semiconducting nano tubes with similar diameter by
their Raman scattering intensity. We show measured resonance Raman profiles of
the radial breathing mode which support our theoretical predictions
Theory of rigid-plane phonon modes in layered crystals
The lattice dynamics of low-frequency rigid-plane modes in metallic (graphene
multilayers, GML) and in insulating (hexagonal boron-nitride multilayers, BNML)
layered crystals is investigated. The frequencies of shearing and compression
(stretching) modes depend on the layer number {\EuScript N} and are presented
in the form of fan diagrams. The results for GML and BNML are very similar. In
both cases only the interactions (van der Waals and Coulomb) between
nearest-neighbor planes are effective, while the interactions between more
distant planes are screened. A comparison with recent Raman scattering results
on low-frequency shear modes in GML [Tan {\it et al.}, arXiv:1106.1146v1
(2011)] is made. Relations with the low-lying rigid-plane phonon dispersions in
the bulk materials are established. Master curves which connect the fan diagram
frequencies for any given {\EuScript N} are derived. Static and dynamic
thermal correlation functions for rigid-layer shear and compression modes are
calculated. The results might be of use for the interpretation of friction
force experiments on multilayer crystals
Combined cerebellar and bilateral cervical posterior spinal artery stroke demonstrated on MRI
Combined cerebellar and spinal ischemic stroke is a rare, critical condition. We report a patient with combined cerebellar and bilateral posterolateral cervical spinal cord infarction due to bilateral stenosis of the vertebral arteries. MRI is the method of choice for imaging this condition; diffusion-weighted imaging of the spinal cord gives reliable results
The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice
We report an experimental and theoretical study of the antiferromagnetic
S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron
scattering, we observe a novel bound-spinon state at high energies in the
linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a
mean-field theory of interacting S=1/2 fermions and arises from the opening of
a gap at the Fermi surface due to confining spinon interactions. The mean-field
model also describes the wave-vector dependence of the bound-spinon states,
particularly in regions where effects of the discrete lattice are important. We
calculate the dynamic structure factor using exact diagonalization of finite
length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.
- …