4,022 research outputs found
Growing Graphs with Hyperedge Replacement Graph Grammars
Discovering the underlying structures present in large real world graphs is a
fundamental scientific problem. In this paper we show that a graph's clique
tree can be used to extract a hyperedge replacement grammar. If we store an
ordering from the extraction process, the extracted graph grammar is guaranteed
to generate an isomorphic copy of the original graph. Or, a stochastic
application of the graph grammar rules can be used to quickly create random
graphs. In experiments on large real world networks, we show that random
graphs, generated from extracted graph grammars, exhibit a wide range of
properties that are very similar to the original graphs. In addition to graph
properties like degree or eigenvector centrality, what a graph "looks like"
ultimately depends on small details in local graph substructures that are
difficult to define at a global level. We show that our generative graph model
is able to preserve these local substructures when generating new graphs and
performs well on new and difficult tests of model robustness.Comment: 18 pages, 19 figures, accepted to CIKM 2016 in Indianapolis, I
DMRG analysis of the SDW-CDW crossover region in the 1D half-filled Hubbard-Holstein model
In order to clarify the physics of the crossover from a spin-density-wave
(SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in
one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian
at half filling within a density matrix renormalisation group (DMRG) approach.
Determining the spin and charge correlation exponents, the momentum
distribution function, and various excitation gaps, we confirm that an
intervening metallic phase expands the SDW-CDW transition in the weak-coupling
regime.Comment: revised versio
Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes
A low energy theory of suspended carbon nanotube quantum dots in weak
tunnelling coupling with metallic leads is presented. The focus is put on the
dependence of the spectrum and the Franck-Condon factors on the geometry of the
junction including several vibronic modes. The relative size and the relative
position of the dot and its associated vibrons strongly influence the
electromechanical properties of the system. A detailed analysis of the complete
parameters space reveals different regimes: in the short vibron regime the
tunnelling of an electron into the nanotube generates a plasmon-vibron
excitation while in the long vibron regime polaron excitations dominate the
scenario. The small, position dependent Franck-Condon couplings of the small
vibron regime convert into uniform, large couplings in the long vibron regime.
Selection rules for the excitations of the different plasmon-vibron modes via
electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on
Type I Planet Migration in Nearly Laminar Disks
We describe 2D hydrodynamic simulations of the migration of low-mass planets
() in nearly laminar disks (viscosity parameter ) over timescales of several thousand orbit periods. We consider disk
masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness
parameters of and 0.05, and a variety of values and
planet masses. Disk self-gravity is fully included. Previous analytic work has
suggested that Type I planet migration can be halted in disks of sufficiently
low turbulent viscosity, for . The halting is due to a
feedback effect of breaking density waves that results in a slight mass
redistribution and consequently an increased outward torque contribution. The
simulations confirm the existence of a critical mass () beyond which migration halts in nearly laminar disks. For \alpha
\ga 10^{-3}, density feedback effects are washed out and Type I migration
persists. The critical masses are in good agreement with the analytic model of
Rafikov (2002). In addition, for \alpha \la 10^{-4} steep density gradients
produce a vortex instability, resulting in a small time-varying eccentricity in
the planet's orbit and a slight outward migration. Migration in nearly laminar
disks may be sufficiently slow to reconcile the timescales of migration theory
with those of giant planet formation in the core accretion model.Comment: 3 figures, accepted to ApJ
Aspects of the FM Kondo Model: From Unbiased MC Simulations to Back-of-an-Envelope Explanations
Effective models are derived from the ferromagnetic Kondo lattice model with
classical corespins, which greatly reduce the numerical effort. Results for
these models are presented. They indicate that double exchange gives the
correct order of magnitude and the correct doping dependence of the Curie
temperature. Furthermore, we find that the jump in the particle density
previously interpreted as phase separation is rather explained by ferromagnetic
polarons.Comment: Proceedings of Wandlitz Days of Magnetism 200
The Anomalous Infrared Emission of Abell 58
We present a new model to explain the excess in mid and near infrared
emission of the central, hydrogen poor dust knot in the planetary nebula (PN)
Abell 58. Current models disagree with ISO measurement because they apply an
average grain size and equilibrium conditions only. We investigate grain size
distributions and temperature fluctuations affecting infrared emission using a
new radiative transfer code and discuss in detail the conditions requiring an
extension of the classical description. The peculiar infrared emission of V605
Aql, the central dust knot in Abell 58, has been modeled with our code. V605
Aql is of special interest as it is one of only three stars ever observed to
move from the evolutionary track of a central PN star back to the post-AGB
state.Comment: 17 pages, 4 figures; accepted and to be published in Ap
Double Resonance Nanolaser based on Coupled Slit-hole Resonator Structures
This work investigates a kind of metallic magnetic cavity based on slit-hole
resonators (SHRs). Two orthogonal hybrid magnetic resonance modes of the cavity
with a large spatial overlap are predesigned at the wavelengths of 980 nm and
1550 nm. The Yb-Er co-doped material serving as a gain medium is set in the
cavity; this enables the resonator to have high optical activity. The numerical
result shows that the strong lasing at 1550 nm may be achieved when the cavity
array is pumped at 980 nm. This double resonance nanolaser array has potential
applications in future optical devices and quantum information techniques.Comment: 11 pages, 3 figures, http://www.dsl.nju.edu/mp
Density-operator approaches to transport through interacting quantum dots: Simplifications in fourth-order perturbation theory
Various theoretical methods address transport effects in quantum dots beyond
single-electron tunneling while accounting for the strong interactions in such
systems. In this paper we report a detailed comparison between three prominent
approaches to quantum transport: the fourth-order Bloch-Redfield quantum master
equation (BR), the real-time diagrammatic technique (RT), and the scattering
rate approach based on the T-matrix (TM). Central to the BR and RT is the
generalized master equation for the reduced density matrix. We demonstrate the
exact equivalence of these two techniques. By accounting for coherences
(nondiagonal elements of the density matrix) between nonsecular states, we show
how contributions to the transport kernels can be grouped in a physically
meaningful way. This not only significantly reduces the numerical cost of
evaluating the kernels but also yields expressions similar to those obtained in
the TM approach, allowing for a detailed comparison. However, in the TM
approach an ad hoc regularization procedure is required to cure spurious
divergences in the expressions for the transition rates in the stationary
(zero-frequency) limit. We show that these problems derive from incomplete
cancellation of reducible contributions and do not occur in the BR and RT
techniques, resulting in well-behaved expressions in the latter two cases.
Additionally, we show that a standard regularization procedure of the TM rates
employed in the literature does not correctly reproduce the BR and RT
expressions. All the results apply to general quantum dot models and we present
explicit rules for the simplified calculation of the zero-frequency kernels.
Although we focus on fourth-order perturbation theory only, the results and
implications generalize to higher orders. We illustrate our findings for the
single impurity Anderson model with finite Coulomb interaction in a magnetic
field.Comment: 29 pages, 12 figures; revised published versio
The evolution of representation in simple cognitive networks
Representations are internal models of the environment that can provide
guidance to a behaving agent, even in the absence of sensory information. It is
not clear how representations are developed and whether or not they are
necessary or even essential for intelligent behavior. We argue here that the
ability to represent relevant features of the environment is the expected
consequence of an adaptive process, give a formal definition of representation
based on information theory, and quantify it with a measure R. To measure how R
changes over time, we evolve two types of networks---an artificial neural
network and a network of hidden Markov gates---to solve a categorization task
using a genetic algorithm. We find that the capacity to represent increases
during evolutionary adaptation, and that agents form representations of their
environment during their lifetime. This ability allows the agents to act on
sensorial inputs in the context of their acquired representations and enables
complex and context-dependent behavior. We examine which concepts (features of
the environment) our networks are representing, how the representations are
logically encoded in the networks, and how they form as an agent behaves to
solve a task. We conclude that R should be able to quantify the representations
within any cognitive system, and should be predictive of an agent's long-term
adaptive success.Comment: 36 pages, 10 figures, one Tabl
- …