2 research outputs found

    Thermal and Mechanical Properties of Polyethylene/Doped-TiO 2

    Get PDF
    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp2ZrCl2 and Cp2TiCl2) in combination with methylaluminoxane. Titanium (IV) oxide containing 1% Mn as dopant was used as nanofillers. The effects of filler concentration, reaction temperature, and pressure on the thermal and mechanical properties of polymer were analyzed. The improvement of nanoparticles dispersion in the polyethylene matrix was checked by WAXD. The thermal properties were analyzed using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The filler impact on the melting temperature of polyethylene synthesized using Cp2ZrCl2 was very minimal which is due to the degree of short-chain branching. The ash content was also analyzed for each nanocomposite and found to be in line with the activity of the catalyst. There was a significant increase in the mechanical properties of the polyethylene by addition of filler
    corecore