3,402 research outputs found

    Noncommutative space-time models

    Full text link
    The FRT quantum Euclidean spaces OqNO_q^N are formulated in terms of Cartesian generators. The quantum analogs of N-dimensional Cayley-Klein spaces are obtained by contractions and analytical continuations. Noncommutative constant curvature spaces are introduced as a spheres in the quantum Cayley-Klein spaces. For N=5 part of them are interpreted as the noncommutative analogs of (1+3) space-time models. As a result the quantum (anti) de Sitter, Newton, Galilei kinematics with the fundamental length and the fundamental time are suggested.Comment: 8 pages; talk given at XIV International Colloquium of Integrable Systems, Prague, June 16-18, 200

    Analytic Solution of Bremsstrahlung TBA

    Full text link
    We consider the quark--anti-quark potential on the three sphere or the generalized cusp anomalous dimension in planar N=4 SYM. We concentrate on the vacuum potential in the near BPS limit with LL units of R-charge. Equivalently, we study the anomalous dimension of a super-Wilson loop with L local fields inserted at a cusp. The system is described by a recently proposed infinite set of non-linear integral equations of the Thermodynamic Bethe Ansatz (TBA) type. That system of TBA equations is very similar to the one of the spectral problem but simplifies a bit in the near BPS limit. Using techniques based on the Y-system of functional equations we first reduced the infinite system of TBA equations to a Finite set of Nonlinear Integral Equations (FiNLIE). Then we solve the FiNLIE system analytically, obtaining a simple analytic result for the potential! Surprisingly, we find that the system has equivalent descriptions in terms of an effective Baxter equation and in terms of a matrix model. At L=0, our result matches the one obtained before using localization techniques. At all other L's, the result is new. Having a new parameter, L, allows us to take the large L classical limit. We use the matrix model description to solve the classical limit and match the result with a string theory computation. Moreover, we find that the classical string algebraic curve matches the algebraic curve arising from the matrix model.Comment: 50 pages, 5 figures. v2: references added, JHEP versio

    Quark--anti-quark potential in N=4 SYM

    Get PDF
    We construct a closed system of equations describing the quark--anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark--anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.Comment: 31 pages, 1 figure; v2: minor correcton

    On the Fermionic Frequencies of Circular Strings

    Full text link
    We revisit the semiclassical computation of the fluctuation spectrum around different circular string solutions in AdS_5xS^5 and AdS_4xCP^3, starting from the Green-Schwarz action. It has been known that the results for these frequencies obtained from the algebraic curve and from the worldsheet computations sometimes do not agree. In particular, different methods give different results for the half-integer shifts in the mode numbers of the frequencies. We find that these discrepancies can be removed if one carefully takes into account the transition matrices in the spin bundle over the target space.Comment: 13 pages, 1 figur

    Numerical results for the exact spectrum of planar AdS4/CFT3

    Get PDF
    We compute the anomalous dimension for a short single-trace operator in planar ABJM theory at intermediate coupling. This is done by solving numerically the set of Thermodynamic Bethe Ansatz equations which are expected to describe the exact spectrum of the theory. We implement a truncation method which significantly reduces the number of integral equations to be solved and improves numerical efficiency. Results are obtained for a range of 't Hooft coupling lambda corresponding to 0h(λ)10 \leq h(\lambda) \leq 1, where h(lambda) is the interpolating function of the AdS4/CFT3 Bethe equations.Comment: v3: corrected Acknowledgements section; v4: minor changes, published version; v5: fixed typos in Eq. (3.9

    Resummation of semiclassical short folded string

    Full text link
    We reconsider semiclassical quantization of folded string spinning in AdS_3 part of AdS_5 X S^5 using integrability-based (algebraic curve) method. We focus on the "short string" (small spin S) limit with the angular momentum J in S^5 scaled down according to \cal J = rho \sqrt \cal S in terms of the variables \cal J = J/\sqrt\lambda, \cal S = S/\sqrt\lambda. The semiclassical string energy in this particular scaling limit admits the double expansion E = \sum_{n=0}^{\infty}\sum_{p=0}^{\infty} (\sqrt\lambda)^{1-n}\,a_{n,p}(rho)\, \cal S^{p+1/2}. It behaves smoothly as J -> 0 and partially resums recent results by Gromov and Valatka. We explicitly compute various one-loop coefficients a_{1,p}(rho) by summing over the fluctuation frequencies for integrable perturbations around the classical solution. For the simple folded string, the result agrees with what could be derived exploiting a recent conjecture of Basso. However, the method can be extended to more general situations. As an example, we consider the m-folded string where Basso's conjecture fails. For this classical solution, we present the exact values of a_{1,0}(rho) and a_{1,1}(rho) for m=2, 3, 4, 5 and explain how to work out the general case.Comment: 19 page

    Quantum Spectral Curve at Work: From Small Spin to Strong Coupling in N=4 SYM

    Full text link
    We apply the recently proposed quantum spectral curve technique to the study of twist operators in planar N=4 SYM theory. We focus on the small spin expansion of anomalous dimensions in the sl(2) sector and compute its first two orders exactly for any value of the 't Hooft coupling. At leading order in the spin S we reproduced Basso's slope function. The next term of order S^2 structurally resembles the Beisert-Eden-Staudacher dressing phase and takes into account wrapping contributions. This expansion contains rich information about the spectrum of local operators at strong coupling. In particular, we found a new coefficient in the strong coupling expansion of the Konishi operator dimension and confirmed several previously known terms. We also obtained several new orders of the strong coupling expansion of the BFKL pomeron intercept. As a by-product we formulated a prescription for the correct analytical continuation in S which opens a way for deriving the BFKL regime of twist two anomalous dimensions from AdS/CFT integrability.Comment: 53 pages, references added; v3: due to a typo in the coefficients C_2 and D_2 on page 29 we corrected the rational part of the strong coupling predictions in equations (1.5-6), (6.22-24), (6.27-30) and in Table
    corecore