261 research outputs found

    Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo

    Get PDF
    Accumulating evidence suggests that changes in the metabolic signature of microglia underlie their response to inflammation. We sought to increase our knowledge of how pro‐inflammatory stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)‐expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria. LPS‐mediated Toll‐like receptor 4 (TLR4) activation also resulted in metabolic reprogramming from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi‐1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi‐1 treatment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial reactive oxygen species production and mitochondrial membrane potential as well as accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi‐1 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, we showed that Mdivi‐1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomodulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data show that the activation of microglia to a classically pro‐inflammatory state is associated with a switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharmacological target for immunomodulation

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation

    Get PDF
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI

    Acute pericarditis due to pegylated interferon alpha therapy for chronic HCV hepatitis - Case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardio toxicity due to interferon therapy was reported only in small case series or case reports. The most frequent cardiac adverse effects related to interferon are arrhythmias and ischemic manifestations. The cardiomyopathy and pericarditis are rare but can be life threatening. The predisposing factors for interferon cardio toxicity were described only for ischemic manifestations and arrhythmias.</p> <p>Case presentation</p> <p>The authors report a case of pericarditis due to alpha interferon therapy for chronic hepatitis C, in a young woman without previous cardiac pathology. The clinical manifestations started during the 7-th month of interferon treatment. The cessation of interferon was necessary. After interferon discontinuation the patient recovered, with complete resolution of pericarditis. The patient scored 9 points on the Naranjo ADR probability scale, indicating a very probable association between pericarditis and interferon administration.</p> <p>Conclusion</p> <p>If a patient receiving interferon therapy complains of chest pain of sudden onset, a cardiac ultrasound should be performed in order to rule out pericarditis. We point out the possibility of an infrequent but severe adverse effect of interferon therapy.</p

    Loss of the Wnt/ÎČ-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury

    Get PDF
    Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/ÎČ-catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/ÎČ-catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/ÎČ-catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/ÎČ-catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/ÎČ-catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy

    A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target

    Get PDF
    The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning (“Causal Reasoning Analytical Framework for Target discovery”—CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy

    Potential antiviral effects of pantethine against SARS-CoV-2

    Get PDF
    Abstract SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection.Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome

    Epigenetic priming of immune/inflammatory pathways activation and abnormal activity of cell cycle pathway in a perinatal model of white matter injury

    Get PDF
    Prenatal inflammatory insults accompany prematurity and provoke diffuse white matter injury (DWMI), which is associated with increased risk of neurodevelopmental pathologies, including autism spectrum disorders. DWMI results from maturation arrest of oligodendrocyte precursor cells (OPCs), a process that is poorly understood. Here, by using a validated mouse model of OPC maturation blockade, we provide the genome-wide ID card of the effects of neuroinflammation on OPCs that reveals the architecture of global cell fate issues underlining their maturation blockade. First, we find that, in OPCs, neuroinflammation takes advantage of a primed epigenomic landscape and induces abnormal overexpression of genes of the immune/inflammatory pathways: these genes strikingly exhibit accessible chromatin conformation in uninflamed OPCs, which correlates with their developmental, stage-dependent expression, along their normal maturation trajectory, as well as their abnormal upregulation upon neuroinflammation. Consistently, we observe the positioning on DNA of key transcription factors of the immune/inflammatory pathways (IRFs, NFkB), in both unstressed and inflamed OPCs. Second, we show that, in addition to the general perturbation of the myelination program, neuroinflammation counteracts the physiological downregulation of the cell cycle pathway in maturing OPCs. Neuroinflammation therefore perturbs cell identity in maturing OPCs, in a global manner. Moreover, based on our unraveling of the activity of genes of the immune/inflammatory pathways in prenatal uninflamed OPCs, the mere suppression of these proinflammatory mediators, as currently proposed in the field, may not be considered as a valid neurotherapeutic strategy

    Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat

    Get PDF
    BACKGROUND: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7). CONCLUSION: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression

    Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy

    Get PDF
    Co-existing infection/inflammation and birth asphyxia potentiate the risk of developing neonatal encephalopathy (NE) and adverse outcome. In a newborn piglet model we assessed the effect of E. coli lipopolysaccharide (LPS) infusion started 4 h prior to and continued for 48 h after hypoxia on brain cell death and systemic haematological changes compared to LPS and hypoxia alone. LPS sensitized hypoxia resulted in an increase in mortality and in brain cell death (TUNEL positive cells) throughout the whole brain, and in the internal capsule, periventricular white matter and sensorimotor cortex. LPS alone did not increase brain cell death at 48 h, despite evidence of neuroinflammation, including the greatest increases in microglial proliferation, reactive astrocytosis and cleavage of caspase-3. LPS exposure caused splenic hypertrophy and platelet count suppression. The combination of LPS and hypoxia resulted in the highest and most sustained systemic white cell count increase. These findings highlight the significant contribution of acute inflammation sensitization prior to an asphyxial insult on NE illness severity
    • 

    corecore