544 research outputs found

    On the Spinning Motion of the Hovering Magnetic Top

    Get PDF
    In this paper we analyze the spinning motion of the hovering magnetic top. We have observed that its motion looks different from that of a classical top. A classical top rotates about its own axis which precesses around a vertical fixed external axis. The hovering magnetic top, on the other hand, has its axis slightly tilted and moves rigidly as a whole about the vertical axis. We call this motion synchronous, because in a stroboscopic experiment we see that a point at the rim of the top moves synchronously with the top axis. We show that the synchronous motion may be attributed to a small deviation of the magnetic moment from the symmetry axis of the top. We calculate the minimum angular velocity required for stability in terms of the moments of inertia and magnetic field and show that it is different from that of a classical top. We also give experimental results that were taken with a top whose moment of inertia can be changed. These results show very good agreement with our calculations.Comment: 19 pages (including 3 figures named fig1.eps-fig3.eps), uses amssymb, epsf and amsbsy (AMSLaTeX

    Magnetic trapping of neutral particles: Classical and Quantum-mechanical study of a Ioffe-Pritchard type trap

    Get PDF
    Recently, we developed a method for calculating the lifetime of a particle inside a magnetic trap with respect to spin flips, as a first step in our efforts to understand the quantum-mechanics of magnetic traps. The 1D toy model that was used in this study was physically unrealistic because the magnetic field was not curl-free. Here, we study, both classically and quantum-mechanically, the problem of a neutral particle with spin S, mass m and magnetic moment mu, moving in 3D in an inhomogeneous magnetic field corresponding to traps of the Ioffe-Pritchard, `clover-leaf' and `baseball' type. Defining by omega_p, omega_z and omega_r the precessional, the axial and the lateral vibrational frequencies, respectively, of the particle in the adiabatic potential, we find classically the region in the $(\omega_{r}% (omega_r -- omega_z) plane where the particle is trapped. Quantum-mechanically, we study the problem of a spin-one particle in the same field. Treating omega_r / omega_p and omega_z / omega_p as small parameters for the perturbation from the adiabatic Hamiltonian, we derive a closed-form expression for the transition rate 1/T_{esc} of the particle from its trapped ground-state. We find that in the extreme cases, the expression for 1/T_{esc} is dominated by the largest of the two frequencies omega_r and omega_z.Comment: 25 pages + 1 EPS figur

    Packing defects and the width of biopolymer bundles

    Full text link
    The formation of bundles composed of actin filaments and cross-linking proteins is an essential process in the maintenance of the cells' cytoskeleton. It has also been recreated by in-vitro experiments, where actin networks are routinely produced to mimic and study the cellular structures. It has long been observed that these bundles seem to have a well defined width distribution, which has not been adequately described theoretically. We propose here that packing defects of the filaments, quenched and random, contribute an effective repulsion that counters the cross-linking adhesion energy and leads to a well defined bundle width. This is a two-dimensional strain-field version of the classic Rayleigh instability of charged droplets
    • …
    corecore