15 research outputs found

    Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype

    Get PDF
    CA IX is a hypoxia-induced, cancer-associated carbonic anhydrase isoform with functional involvement in pH control and cell adhesion. Here we describe an alternative splicing variant of the CA9 mRNA, which does not contain exons 8–9 and is expressed in tumour cells independently of hypoxia. It is also detectable in normal tissues in the absence of the full-length transcript and can therefore produce false-positive data in prognostic studies based on the detection of the hypoxia- and cancer-related CA9 expression. The splicing variant encodes a truncated CA IX protein lacking the C-terminal part of the catalytic domain. It shows diminished catalytic activity and is intracellular or secreted. When overexpressed, it reduces the capacity of the full-length CA IX protein to acidify extracellular pH of hypoxic cells and to bind carbonic anhydrase inhibitor. HeLa cells transfected with the splicing variant cDNA generate spheroids that do not form compact cores, suggesting that they fail to adapt to hypoxic stress. Our data indicate that the splicing variant can functionally interfere with the full-length CA IX. This might be relevant particularly under conditions of mild hypoxia, when the cells do not suffer from severe acidosis and do not need excessive pH control

    Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse

    No full text
    Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases

    Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies

    Full text link
    Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters intoin therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years more focus has been put into the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetical pre-requisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extra cellular signalling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may be taken advantage of for new tumor labelling/imaging and treatment strategies. One of the Achilles’ heels of hypoxia research has always been exact measurements of tissue oxygenation as well as control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed Euroxy, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross talk with responses to pH and redox changes. The carbon anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has lead to marketable culture flaks with sensors and incubation equipment and the synthesis of new drug candidates against new molecular targets. New labelling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue now are being tested in xeno-graft models and also are in early clinical testing while new potential anticancer drugs are undergoing tests using xenografted tumor cancers. The present paper describes the above results in individual consortium partner presentations
    corecore