11 research outputs found
Model Reduction for Multiscale Lithium-Ion Battery Simulation
In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially
resolved porous electrodes. We present new results on the application of the
reduced basis method to the resulting instationary 3D battery model that
involves strong non-linearities due to Buttler-Volmer kinetics. Empirical
operator interpolation is used to efficiently deal with this issue.
Furthermore, we present the localized reduced basis multiscale method for
parabolic problems applied to a thermal model of batteries with resolved porous
electrodes. Numerical experiments are given that demonstrate the reduction
capabilities of the presented approaches for these real world applications
Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries
Polymeric binders play an important role in electrochemical performance of high-capacity silicon (Si) anodes that usually suffer from severe capacity fading due to unparalleled volume change of Si during cycling. In an effort to find efficient polymeric binders that could mitigate such capacity fading, herein, we introduce polymerized beta-cyclodextrin (beta-CDp) binder for Si nanoparticle anodes. Unlike one-dimensional binders, hyperbranched network structure of beta-CDp presents multidimensional hydrogen-bonding interactions with Si particles and therefore offers robust contacts between both components. Even the Si nanoparticles that lost the original contacts with the binder during cycling recover within multidimensional binder network, thus creating a self-healing effect. Utilizing these advantageous features, beta-CDp-based Si electrode shows markedly improved cycling performance compared to those of other well-known binder cases, especially when combined with linear polymers at an appropriate ratio to form hybrid binders.N