57 research outputs found

    The preference for water nipples vs. water bowls in dairy goats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have reported that the design of the water dispensers can influence the water intake in farm animals. Horses and dairy cows seem to prefer to drink from an open surface whereas sheep and pigs apparently prefer water nipples, probably because of the worse water quality in water bowls. The aim of the present study was to examine the preference of dairy goats for water nipples or water bowls.</p> <p>Methods</p> <p>In each of the two experiments (exp. 1, dry goats, exp. 2 lactating goats), 42 dairy goats were allotted into 6 groups of 7 goats. In period 1, the goats had access to a water nipple. In period 2, they had access to a water bowl and in period 3 (preference test) they had access to both a water nipple and a water bowl. Water usage and wastage was recorded and water intake (water usage - water wastage) was calculated for each group for the two last days of each period. In experiment 2, water samples from each dispenser were analyzed for heterotrophy germs at 22°C, <it>Escherichia coli </it>and turbidity.</p> <p>Results</p> <p>Water usage was higher from water nipples than from water bowls both in experiment 1 (dry goats) and experiment 2 (lactating goats). There was however, no difference in water intake from water nipples and water bowls. In the preference test (period 3), the water intake tended to be higher from the water nipple than from the water bowl both for the dry goats (exp. 1) and lactating goats (exp. 2). Especially for the dry goats, the differences between groups were large. Turbidity and heterotrophy germs were much higher in the samples from the water bowls than from the water nipples.</p> <p>Water wastage from the water bowls was negligible compared to the water nipples. From the water nipples the water wastage was 30% and 23% of water usage for the dry and lactating goats respectively.</p> <p>Conclusions</p> <p>We conclude that type of water dispenser (nipple or bowl) was probably of minor importance for water intake in goats, but water bowls had a lower water quality.</p

    Measuring enteric methane emissions from individual ruminant animals in their natural environment

    Get PDF
    Ruminant livestock are an important source of meat, milk, fiber, and labor for humans. The process by which ruminants digest plant material through rumen fermentation into useful product results in the loss of energy in the form of methane gas from consumed organic matter. The animal removes the methane building up in its rumen by repeated eructations of gas through its mouth and nostrils. Ruminant livestock are a notable source of atmospheric methane, with an estimated 17% of global enteric methane emissions from livestock. Historically, enteric methane was seen as an inefficiency in production and wasted dietary energy. This is still the case, but now methane is seen more as a pollutant and potent greenhouse gas. The gold standard method for measuring methane production from individual animals is a respiration chamber, which is used for metabolic studies. This approach to quantifying individual animal emissions has been used in research for over 100 years; however, it is not suitable for monitoring large numbers of animals in their natural environment on commercial farms. In recent years, several more mobile monitoring systems discussed here have been developed for direct measurement of enteric methane emissions from individual animals. Several factors (diet composition, rumen microbial community, and their relationship with morphology and physiology of the host animal) drive enteric methane production in ruminant populations. A reliable method for monitoring individual animal emissions in large populations would allow (1) genetic selection for low emitters, (2) benchmarking of farms, and (3) more accurate national inventory accounting

    Estimation simple et fiable des dégagements gazeux issus de fermentation

    No full text
    corecore