6 research outputs found
Instability of black hole formation under small pressure perturbations
We investigate here the spectrum of gravitational collapse endstates when
arbitrarily small perfect fluid pressures are introduced in the classic black
hole formation scenario as described by Oppenheimer, Snyder and Datt (OSD) [1].
This extends a previous result on tangential pressures [2] to the more
physically realistic scenario of perfect fluid collapse. The existence of
classes of pressure perturbations is shown explicitly, which has the property
that injecting any smallest pressure changes the final fate of the dynamical
collapse from a black hole to a naked singularity. It is therefore seen that
any smallest neighborhood of the OSD model, in the space of initial data,
contains collapse evolutions that go to a naked singularity outcome. This gives
an intriguing insight on the nature of naked singularity formation in
gravitational collapse.Comment: 7 pages, 1 figure, several modifications to match published version
on GR
Radiating black hole solutions in arbitrary dimensions
We prove a theorem that characterizes a large family of non-static solutions
to Einstein equations in -dimensional space-time, representing, in general,
spherically symmetric Type II fluid. It is shown that the best known
Vaidya-based (radiating) black hole solutions to Einstein equations, in both
four dimensions (4D) and higher dimensions (HD), are particular cases from this
family. The spherically symmetric static black hole solutions for Type I fluid
can also be retrieved. A brief discussion on the energy conditions,
singularities and horizons is provided.Comment: RevTeX 9 pages, no figure