11,741 research outputs found
Conserved Endonuclease Function of Hantavirus L Polymerase.
Hantaviruses are important emerging pathogens belonging to the Bunyaviridae family. Like other segmented negative strand RNA viruses, the RNA-dependent RNA polymerase (RdRp) also known as L protein of hantaviruses lacks an intrinsic "capping activity". Hantaviruses therefore employ a "cap snatching" strategy acquiring short 5' RNA sequences bearing 5'cap structures by endonucleolytic cleavage from host cell transcripts. The viral endonuclease activity implicated in cap snatching of hantaviruses has been mapped to the N-terminal domain of the L protein. Using a combination of molecular modeling and structure-function analysis we confirm and extend these findings providing evidence for high conservation of the L endonuclease between Old and New World hantaviruses. Recombinant hantavirus L endonuclease showed catalytic activity and a defined cation preference shared by other viral endonucleases. Based on the previously reported remarkably high activity of hantavirus L endonuclease, we established a cell-based assay for the hantavirus endonuclase function. The robustness of the assay and its high-throughput compatible format makes it suitable for small molecule drug screens to identify novel inhibitors of hantavirus endonuclease. Based on the high degree of similarity to RdRp endonucleases, some candidate inhibitors may be broadly active against hantaviruses and other emerging human pathogenic Bunyaviruses
Coherent current transport in wide ballistic Josephson junctions
We present an experimental and theoretical investigation of coherent current
transport in wide ballistic superconductor-two dimensional electron
gas-superconductor junctions. It is found experimentally that upon increasing
the junction length, the subharmonic gap structure in the current-voltage
characteristics is shifted to lower voltages, and the excess current at
voltages much larger than the superconducting gap decreases. Applying a theory
of coherent multiple Andreev reflection, we show that these observations can be
explained in terms of transport through Andreev resonances.Comment: 4 pages, 4 figure
Impact of forwarding conditions on productivity of forwarder Kranman Bison 10000
The aim of this study is to investigate potential uses of Kranman Bison 10000 6WD
forwarder in thinning under normal and difficult forwarding conditions, to determine productivity,
average load size and forwarding costs. In normal forwarding conditions productivity
of forwarding increase by 11%. The average forwarded load is 2.0 m³ and the average load
capacity is 80%, accordingly. Prime cost of chainsaw-prepared roundwood is 8.7 € mᐨ ³,but,
when using harvester for preparing roundwood, itis possible to reduce the prime cost by about
2.9 € mᐨ ³
Transport in metallic multi-island Coulomb blockade systems: A systematic perturbative expansion in the junction transparency
We study electronic transport through metallic multi-island Coulomb-blockade
systems. Based on a diagrammatic real-time approach, we develop a computer
algorithm that generates and calculates all transport contributions up to
second order in the tunnel-coupling strengths for arbitrary multi-island
systems. This comprises sequential and cotunneling, as well as terms
corresponding to a renormalization of charging energies and tunneling
conductances. Multi-island cotunneling processes with energy transfer between
different island are taken into account. To illustrate our approach we analyze
the current through an island in Coulomb blockade, that is electrostatically
coupled to a second island through which a large current is flowing. In this
regime both cotunneling processes involving one island only as well as
multi-island processes are important. The latter can be understood as
photon-assisted sequential tunneling in the blockaded island, where the photons
are provided by potential fluctuations due to sequential tunneling in the
second island. We compare results of our approach to a P(E)-theory for
photon-assisted tunneling in the weak coupling limit.Comment: 14 pages, 7 figures, published version; minor changes in Sec. IV
RELATIONSHIP BETWEEN ATOPIC DERMATITIS AND IMMUNOGLOBULIN E
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66225/1/j.1365-4362.1976.tb00705.x.pd
Single-artificial-atom lasing using a voltage-biased superconducting charge qubit
We consider a system composed of a single artificial atom coupled to a cavity
mode. The artificial atom is biased such that the most dominant relaxation
process in the system takes the atom from its ground state to its excited
state, thus ensuring population inversion. A recent experimental manifestation
of this situation was achieved using a voltage-biased superconducting charge
qubit. Even under the condition of `inverted relaxation', lasing action can be
suppressed if the `relaxation' rate is larger than a certain threshold value.
Using simple transition-rate arguments and a semiclassical calculation, we
derive analytic expressions for the lasing suppression condition and the state
of the cavity in both the lasing and suppressed-lasing regimes. The results of
numerical calculations agree very well with the analytically derived results.
We start by analyzing a simplified two-level-atom model, and we then analyze a
three-level-atom model that should describe accurately the recently realized
superconducting artificial-atom laser.Comment: 21 pages in preprint format, 6 figure
Formation of early-type galaxies from cosmological initial conditions
We describe high resolution Smoothed Particle Hydrodynamics (SPH) simulations
of three approximately field galaxies starting from \LCDM initial
conditions. The simulations are made intentionally simple, and include
photoionization, cooling of the intergalactic medium, and star formation but
not feedback from AGN or supernovae. All of the galaxies undergo an initial
burst of star formation at , accompanied by the formation of a
bubble of heated gas. Two out of three galaxies show early-type properties at
present whereas only one of them experienced a major merger. Heating from
shocks and -PdV work dominates over cooling so that for most of the gas the
temperature is an increasing function of time. By a significant
fraction of the final stellar mass is in place and the spectral energy
distribution resembles those of observed massive red galaxies. The galaxies
have grown from on average by 25% in mass and in size by gas poor
(dry) stellar mergers. By the present day, the simulated galaxies are old
(), kinematically hot stellar systems surrounded by hot
gaseous haloes. Stars dominate the mass of the galaxies up to
effective radii ( kpc). Kinematic and most photometric properties
are in good agreement with those of observed elliptical galaxies. The galaxy
with a major merger develops a counter-rotating core. Our simulations show that
realistic intermediate mass giant elliptical galaxies with plausible formation
histories can be formed from \LCDM initial conditions even without requiring
recent major mergers or feedback from supernovae or AGN.Comment: accepted for publication in Ap
Coherent and sequential photoassisted tunneling through a semiconductor double barrier structure
We have studied the problem of coherent and sequential tunneling through a
double barrier structure, assisted by light considered to be present All over
the structure, i,e emitter, well and collector as in the experimental evidence.
By means of a canonical transformation and in the framework of the time
dependent perturbation theory, we have calculated the transmission coefficient
and the electronic resonant current. Our calculations have been compared with
experimental results turning out to be in good agreement. Also the effect on
the coherent tunneling of a magnetic field parallel to the current in the
presence of light, has been considered.Comment: Revtex3.0, 8figures uuencoded compressed tar-fil
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
- …