7 research outputs found

    Matrix models and N=2 gauge theory

    Full text link
    We describe how the ingredients and results of the Seiberg-Witten solution to N=2 supersymmetric U(N) gauge theory may be obtained from a matrix model.Comment: 6 pages, AMSLaTeX (ws-procs9x6.cls included). Presented at QTS3 (Cincinnati, Ohio, Sept. 10-14, 2003

    Matrix model approach to the N=2 U(N) gauge theory with matter in the fundamental representation

    Get PDF
    We use matrix model technology to study the N=2 U(N) gauge theory with N_f massive hypermultiplets in the fundamental representation. We perform a completely perturbative calculation of the periods a_i and the prepotential F(a) up to the first instanton level, finding agreement with previous results in the literature. We also derive the Seiberg-Witten curve from the large-M solution of the matrix model. We show that the two cases N_f<N and N \le N_f < 2N can be treated simultaneously

    The N=2 gauge theory prepotential and periods from a perturbative matrix model calculation

    Get PDF
    We perform a completely perturbative matrix model calculation of the physical low-energy quantities of the N=2 U(N) gauge theory. Within the matrix model framework we propose a perturbative definition of the periods a_i in terms of certain tadpole diagrams, and check our conjecture up to first order in the gauge theory instanton expansion. The prescription does not require knowledge of the Seiberg-Witten differential or curve. We also compute the N=2 prepotential F(a) perturbatively up to the first-instanton level finding agreement with the known result

    Cubic curves from matrix models and generalized Konishi anomalies

    No full text
    We study the matrix model/gauge theory connection for three different N=1 models: U(N) x U(N) with matter in bifundamental representations, U(N) with matter in the symmetric representation, and U(N) with matter in the antisymmetric representation. Using Ward identities, we explicitly show that the loop equations of the matrix models lead to cubic algebraic curves. We then establish the equivalence of the matrix model and gauge theory descriptions in two ways. First, we derive generalized Konishi anomaly equations in the gauge theories, showing that they are identical to the matrix-model equations. Second, we use a perturbative superspace analysis to establish the relation between the gauge theories and the matrix models. We find that the gauge coupling matrix for U(N) with matter in the symmetric or antisymmetric representations is_not_ given by the second derivative of the matrix-model free energy. However, the matrix-model prescription can be modified to give the gauge coupling matrix

    Unitary integrals and related matrix models

    No full text
    corecore