101,268 research outputs found

    Film-stability in a vertical rotating tube with a core-gas flow

    Get PDF
    Linear hydrodynamic stability of interface between Newtonian liquid film and core fluid under influence of swirl, core flow, and gravit

    Zero sound in a two-dimensional dipolar Fermi gas

    Get PDF
    We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.Comment: 15 pages, 2 figure

    Dislocation constriction and cross-slip in Al and Ag: an ab initio study

    Full text link
    A novel model based on the Peierls framework of dislocations is developed. The new theory can deal with a dislocation spreading at more than one slip planes. As an example, we study dislocation cross-slip and constriction process of two fcc metals, Al and Ag. The energetic parameters entering the model are determined from ab initio calculations. We find that the screw dislocation in Al can cross-slip spontaneously in contrast with that in Ag, which splits into partials and cannot cross-slip without first being constricted. The dislocation response to an external stress is examined in detail. We determine dislocation constriction energy and critical stress for cross-slip, and from the latter, we estimate the cross-slip energy barrier for the straight screw dislocations
    corecore