2,775 research outputs found
Modes of Growth in Dynamic Systems
Regardless of a system's complexity or scale, its growth can be considered to
be a spontaneous thermodynamic response to a local convergence of down-gradient
material flows. Here it is shown how growth can be constrained to a few
distinct modes that depend on the availability of material and energetic
resources. These modes include a law of diminishing returns, logistic behavior
and, if resources are expanding very rapidly, super-exponential growth. For a
case where a system has a resolved sink as well as a source, growth and decay
can be characterized in terms of a slightly modified form of the predator-prey
equations commonly employed in ecology, where the perturbation formulation of
these equations is equivalent to a damped simple harmonic oscillator. Thus, the
framework presented here suggests a common theoretical under-pinning for
emergent behaviors in the physical and life sciences. Specific examples are
described for phenomena as seemingly dissimilar as the development of rain and
the evolution of fish stocks.Comment: 16 pages, 6 figures, including appendi
Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives.
We report on radical polarization and optically-driven liquid DNP using nitroxide radicals functionalized by photoexcitable fullerene derivatives. Pulse laser excitation of the fullerene moiety leads to transient nitroxide radical polarization that is one order of magnitude larger than that at the Boltzmann equilibrium. The life time of the radical polarization increases with the size of the fullerene derivative and is correlated with the electronic spin-lattice relaxation time T1e. Overhauser NMR signal enhancements of toluene solvent protons were observed under steady-state illumination, which replaced microwave irradiation
Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model
A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy
satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance
(OPTRAN) model, developed for the speedy calculation of transmittances in clear atmospheres, and
a thin cirrus cloud parameterization using a number of observed ice crystal size and shape distributions.
Numerical simulations show that cirrus cloudy radiances in the 800–1130-cm^(-1) thermal infrared window are
sufficiently sensitive to variations in cirrus optical depth and ice crystal size as well as in ice crystal shape
if appropriate habit distribution models are selected a priori for analysis. The parameterization model has
been applied to the Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite to interpret clear
and thin cirrus spectra observed in the thermal infrared window. Five clear and 29 thin cirrus cases at
nighttime over and near the Atmospheric Radiation Measurement program (ARM) tropical western Pacific
(TWP) Manus Island and Nauru Island sites have been chosen for this study. A X^2-minimization program
was employed to infer the cirrus optical depth and ice crystal size and shape from the observed AIRS
spectra. Independent validation shows that the AIRS-inferred cloud parameters are consistent with those
determined from collocated ground-based millimeter-wave cloud radar measurements. The coupled thin
cirrus radiative transfer parameterization and OPTRAN, if combined with a reliable thin cirrus detection
scheme, can be effectively used to enhance the AIRS data volume for data assimilation in numerical
weather prediction models
Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3
We studied the defects of Bi2Se3 generated from Bridgman growth of
stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size,
and transport properties are strongly affected by the types of defect
generated. Major defect types of Bi_Se antisite and partial Bi_2-layer
intercalation are identified through combined studies of direct atomic-scale
imaging with scanning transmission electron microscopy (STEM) in conjunction
with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and
Hall effect measurements. We propose a consistent explanation to the origin of
defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure
Choice of implicit and explicit operators for the upwind differencing method
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76274/1/AIAA-1988-624-513.pd
- …