19 research outputs found
The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model
We study the short-range nucleon-nucleon interaction in a chiral constituent
quark model by diagonalizing a Hamiltonian comprising a linear confinement and
a Goldstone boson exchange interaction between quarks. The six-quark harmonic
oscillator basis contains up to two excitation quanta. We show that the highly
dominant configuration is due to its specific
flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a
strong effective repulsion at zero separation between nucleons in both
and channels. The symmetry structure of the highly dominant
configuration implies the existence of a node in the S-wave relative motion
wave function at short distances. The amplitude of the oscillation of the wave
function at short range will be however strongly suppressed. We discuss the
mechanism leading to the effective short-range repulsion within the chiral
constituent quark model as compared to that related with the one-gluon exchange
interaction.Comment: 31 pages, LaTe
Elastic Nd scattering at intermediate energies as a tool for probing the short-range deuteron structure
A calculation of the deuteron polarization observables , ,
, and the differential cross-section for elastic
nucleon-deuteron scattering at incident deuteron energies 270 and 880 MeV in
lab is presented. A comparison of the calculations with two different deuteron
wave-functions derived from the Bonn-CD -potential model and the dressed
bag quark model is carried out. A model-independent approach, based on an
optical potential framework, is used in which a nucleon-nucleon -matrix is
assumed to be local and taken on the energy shell, but still depends on the
internal nucleon momentum in a deuteron.Comment: 15 pages, 4 figure
NN interaction in a Goldstone boson exchange model
Adiabatic nucleon-nucleon potentials are calculated in a six-quark
nonrelativistic chiral constituent quark model where the Hamiltonian contains a
linear confinement and a pseudoscalar meson (Goldstone boson) exchange
interaction between quarks. Calculations are performed both in a cluster model
and a molecular orbital basis, through coupled channels. In both cases the
potentials present an important hard core at short distances, explained through
the dominance of the [51]_{FS} configuration, but do not exhibit an attractive
pocket. We add a scalar meson exchange interaction and show how it can account
for some middle-range attraction.Comment: 32 pages with 12 eps figures incorporated, RevTeX. Final version
published in PR
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Moscow-type NN-potentials and three-nucleon bound states
A detailed description of Moscow-type (M-type) potential models for the NN
interaction is given. The microscopic foundation of these models, which appear
as a consequence of the composite quark structure of nucleons, is discussed.
M-type models are shown to arise naturally in a coupled channel approach when
compound or bag-like six-quark states, strongly coupled to the NN channel, are
eliminated from the complete multiquark wave function. The role of the
deep-lying bound states that appear in these models is elucidated. By
introducing additional conditions of orthogonality to these compound six-quark
states, a continuous series of almost on-shell equivalent nonlocal interaction
models, characterized by a strong reduction or full absence of a local
repulsive core (M-type models), is generated. The predictions of these
interaction models for 3N systems are analyzed in detail. It is shown that
M-type models give, under certain conditions, a stronger binding of the 3N
system than the original phase-equivalent model with nodeless wave functions.
An analysis of the 3N system with the new versions of the Moscow NN potential
describing also the higher even partial waves is presented. Large deviations
from conventional NN force models are found for the momentum distribution in
the high momentum region. In particular, the Coulomb displacement energy for
nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H
binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.
Pionic decay of a possible d' dibaryon and the short-range NN interaction
We study the pionic decay of a possible dibaryon d′→N+N+π in the microscopic quark shell model. The initial d′ dibaryon wave function (JP=0-, T=0) consists of one 1ħω six-quark shell-model s5p[51]X configuration. The most important final six-quark configurations s6[6]X, s4p2[42]X, and (s4p2-s52s)[6]X are properly projected onto the NN channel. The final state NN interaction is investigated by means of two phase-equivalent—but off-shell different—potential models. We demonstrate that the decay width Γd′ depends strongly on the short-range behavior of the NN wave function. In addition, the width Γd′ is very sensitive to the mass and size of the d′ dibaryon. For dibaryon masses slightly above the experimentally suggested value Md′=2.065GeV, we obtain a pionic decay width of Γd′≈0.18–0.32MeV close to the experimental value Γd′≈0.5MeV.Obukhovsky, I. Itonaga, K. ; Wagner, Georg ; Buchmann, A. ; Faessler, Aman
Dibaryon model for nuclear force and the properties of the system
The dibaryon model for interaction, which implies the formation of an
intermediate six-quark bag dressed by a -field, is applied to the
system, where it results in a new three-body force of scalar nature between the
six-quark bag and a third nucleon. A new multicomponent formalism is developed
to describe three-body systems with nonstatic pairwise interactions and
non-nucleonic degrees of freedom. Precise variational calculations of
bound states are carried out in the dressed-bag model including the new scalar
three-body force. The unified coupling constants and form factors for and
force operators are used in the present approach, in a sharp contrast to
conventional meson-exchange models. It is shown that this three-body force
gives at least half the total binding energy, while the weight of
non-nucleonic components in the H and He wavefunctions can exceed 10%.
The new force model provides a very good description of bound states with
a reasonable magnitude of the coupling constant. A new Coulomb
force between the third nucleon and dibaryon is found to be very important for
a correct description of the Coulomb energy and r.m.s. charge radius in He.
In view of the new results for Coulomb displacement energy obtained here for
A=3 nuclei, an explanation for the long-term Nolen--Schiffer paradox in nuclear
physics is suggested. The role of the charge-symmetry-breaking effects in the
nuclear force is discussed.Comment: 64 pages, 7 figures, LaTeX, to be published in Phys. At. Nucl. (2005
A dressed bag model study of the final-state interaction in photoproduction processes off the deuteron
The impact of the short-range interaction on the pion
photoproduction processes off the deuteron in the -resonance region is
studied in the framework of recently proposed dressed-bag model. A common
dressing procedure for bare three- and six-quark states is used to describe
both the pion decay widths of baryon resonances and the effective (or
) interaction at short ranges related to the inner dressed-bag
states. It is shown that the effect of short-range interaction for
the forward-angle photoproduction off the deuteron cannot be
neglected. The prospects for further development of the model to describe the
short-range (or ) correlations in the lightest nuclei are
discussed