49 research outputs found
MIPAS measurements of upper tropospheric C2H6 and O3 during the southern hemispheric biomass burning season in 2003
Under cloud free conditions, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) provides measurements of spectrally resolved limb radiances down to the upper troposphere. These are used to infer global distributions of mixing ratios of atmospheric constituents in the upper troposphere and the stratosphere. From 21 October to 12 November 2003, MIPAS observed enhanced amounts of upper tropospheric C2H6 (up to about 400 pptv) and ozone (up to about 80 ppbv). The absolute values of C2H6, however, may be systematically low by about 30% due to uncertainties of the spectroscopic data used. By means of trajectory calculations, the enhancements observed in the southern hemisphere are, at least partly, attributed to a biomass burning plume, which covers wide parts of the Southern hemisphere, from South America, the Atlantic Ocean, Africa, the Indian Ocean to Australia. The chemical composition of the part of the plume-like pollution belt associated with South American fires, where rainforest burning is predominant appears different from the part of the plume associated with southern African savanna burning. In particular, African savanna fires lead to a larger ozone enhancement than equatorial American fires. In this analysis, MIPAS observations of high ozone were disregarded where low CFC-11 (below 245 pptv) was observed, because this hints at a stratospheric component in the measured signal. Different type of vegetation burning (flaming versus smouldering combustion) has been identified as a candidate explanation for the different plume compositions
Volcanic SO2 by UV-TIR satellite retrievals: validation by using ground-based network at Mt. Etna
Mt. Etna volcano in Italy is one of the most active degassing volcanoes worldwide, emitting a mean of 1.7 Mt/year of Sulphur Dioxide (SO2) in quiescent periods. In this work, SO2 measurements retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), hyper-spectral Infrared Atmospheric Sounding Interferometer (IASI) and the second Global Ozone Monitoring Experiment (GOME-2) data are compared with the ground-based data from the FLux Automatic MEasurement monitoring network (FLAME). Among the eighteen lava fountain episodes occurring at Mt. Etna in 2011, the 10 April
paroxysmal event has been selected as a case-study for the simultaneous observation of the SO2 cloud by satellite and ground-based sensors. For each data-set two retrieval techniques were adopted and the
measurements of SO2 mass and flux with their respective uncertainty were obtained. With respect to the FLAME SO2 mass of 4.5 Gg, MODIS, IASI and GOME-2 differ by about 10%, 15% and 30%, respectively. The SO2 flux correlation coefficient between MODIS and FLAME is 0.84. All the retrievals within the respective errors are in agreement with the ground-based measurements supporting the validity of these space measurements
Solar UV irradiance in a changing climate: Trends in europe and the significance of spectral monitoring in Italy
Review of the existing bibliography shows that the direction and magnitude of the long-term trends of UV irradiance, and their main drivers, vary significantly throughout Europe. Analysis of total ozone and spectral UV data recorded at four European stations during 1996–2017 reveals that long-term changes in UV are mainly driven by changes in aerosols, cloudiness, and surface albedo, while changes in total ozone play a less significant role. The variability of UV irradiance is large throughout Italy due to the complex topography and large latitudinal extension of the country. Analysis of the spectral UV records of the urban site of Rome, and the alpine site of Aosta reveals that differences between the two sites follow the annual cycle of the differences in cloudiness and surface albedo. Comparisons between the noon UV index measured at the ground at the same stations and the corresponding estimates from the Deutscher Wetterdienst (DWD) forecast model and the ozone monitoring instrument (OMI)/Aura observations reveal differences of up to 6 units between individual measurements, which are likely due to the different spatial resolution of the different datasets, and average differences of 0.5–1 unit, possibly related to the use of climatological surface albedo and aerosol optical properties in the retrieval algorithms
Social Inequalities of Functioning and Perceived Health in Switzerland–A Representative Cross-Sectional Analysis
Many people worldwide live with a disability, i.e. limitations in functioning. The prevalence is expected to increase due to demographic change and the growing importance of non-communicable disease and injury. To date, many epidemiological studies have used simple dichotomous measures of disability, even though the WHO's International Classification of Functioning, Disability, and Health (ICF) provides a multi-dimensional framework of functioning. We aimed to examine associations of socio-economic status (SES) and social integration in 3 core domains of functioning (impairment, pain, limitations in activity and participation) and perceived health. We conducted a secondary analysis of representative cross-sectional data of the Swiss Health Survey 2007 including 10,336 female and 8,424 male Swiss residents aged 15 or more. Guided by a theoretical ICF-based model, 4 mixed effects Poisson regressions were fitted in order to explain functioning and perceived health by indicators of SES and social integration. Analyses were stratified by age groups (15–30, 31–54, ≥55 years). In all age groups, SES and social integration were significantly associated with functional and perceived health. Among the functional domains, impairment and pain were closely related, and both were associated with limitations in activity and participation. SES, social integration and functioning were related to perceived health. We found pronounced social inequalities in functioning and perceived health, supporting our theoretical model. Social factors play a significant role in the experience of health, even in a wealthy country such as Switzerland. These findings await confirmation in other, particularly lower resourced settings
The use of QBO, ENSO, and NAO perturbations in the evaluation of GOME-2 MetOp A total ozone measurements
In this work we present evidence that quasi-cyclical perturbations in total
ozone (quasi-biennial oscillation – QBO, El Niño–Southern Oscillation –
ENSO, and North Atlantic Oscillation – NAO) can be used as independent proxies in
evaluating Global Ozone Monitoring Experiment (GOME) 2 aboard MetOp A
(GOME-2A)
satellite total ozone data, using ground-based (GB) measurements, other satellite
data, and chemical transport model calculations. The analysis is performed in
the frame of the validation strategy on longer time scales within the
European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Satellite Application Facility on Atmospheric Composition
Monitoring (AC SAF) project, covering the period 2007–2016. Comparison of
GOME-2A total ozone with ground observations shows mean differences of about
-0.7±1.4 % in the tropics (0–30∘), about +0.1±2.1 % in the mid-latitudes (30–60∘), and about +2.5±3.2 % and
0.0±4.3 % over the northern and southern high latitudes (60–80∘), respectively. In general, we find that GOME-2A total ozone data depict
the QBO–ENSO–NAO
natural fluctuations in concurrence with the co-located solar
backscatter ultraviolet radiometer (SBUV), GOME-type Total Ozone Essential
Climate Variable (GTO-ECV; composed of total ozone observations from GOME, SCIAMACHY – SCanning Imaging Absorption
SpectroMeter for Atmospheric CHartographY, GOME-2A, and OMI – ozone
monitoring instrument, combined into one homogeneous time series), and
ground-based observations. Total ozone from GOME-2A is well correlated
with the QBO (highest correlation in the tropics of +0.8) in agreement with
SBUV, GTO-ECV, and GB data which also give the highest correlation in the
tropics. The differences between deseazonalized GOME-2A and GB total ozone in
the tropics are within ±1 %. These differences were tested further
as to their correlations with the QBO. The differences had practically no QBO
signal, providing an independent test of the stability of the long-term
variability of the satellite data. Correlations between GOME-2A total ozone
and the Southern Oscillation Index (SOI) were studied over the tropical
Pacific Ocean after removing seasonal, QBO, and solar-cycle-related
variability. Correlations between ozone and the SOI are on the order of +0.5,
consistent with SBUV and GB observations. Differences between GOME-2A and GB
measurements at the station of Samoa (American Samoa; 14.25∘ S,
170.6∘ W) are within ±1.9 %. We also studied the impact of the NAO
on total ozone in the northern mid-latitudes in winter. We find very good
agreement between GOME-2A and GB observations over Canada and Europe as to
their NAO-related variability, with mean differences reaching the ±1 % levels. The agreement and small differences which were found between
the independently produced total ozone datasets as to the influence of the QBO, ENSO, and NAO show the importance of these climatological proxies as
additional tool for monitoring the long-term stability of satellite–ground-truth
biases.</p
Lifestyle traits as predictors of driving behaviour in urban areas of Greece
The aim of this study was to examine possible links between different lifestyle patterns and aberrant driver's behaviour. Personal interviews were conducted in a representative sample of 324 adults (18-65), all residents of Crete. Aberrant driver's behaviour was assessed by the 'driver behaviour questionnaire' (DBQ). Also to measure different dimensions of lifestyle, first, a 26-items questionnaire was used, and second, three questions measuring 'driving without destination', related in previous findings with road accident risk. Four lifestyle patterns: 'religion/tradition', 'driving aimlessly', 'sports' and 'culture' are significant predictors of ordinary violations. 'Driving without destination' has a significant effect all three DBQ factors (b positive). 'Religion/tradition' was related only to ordinary violations (b negative) and 'sports' has a positive impact on ordinary violations and a negative impact on 'errors'. Two lifestyle factors are related to more dangerous driving: 'Driving without destination' and/or pursuing a more 'athletic way of living'. Road safety campaigns must teach the first group to use other hobbles and activities to vent their feelings and the second, not to overestimate their abilities, while driving
Nutrients fixation by algae and limiting factors of algal growth in flooded rice fields under semi-arid Mediterranean conditions: case study in Thessaloniki plain in Greece
The aim of this study is to assess the fixation of the major nutrients C, N, P, Ca, Mg, K, Na by algal biomass produced in the rice fields of Thessaloniki plain in Greece under semi-arid Mediterranean conditions and to evaluate the limiting factors for their growth. Measurements were performed in experimental rice-field following the regional conventional practices (C-H treatment): (a) direct sowing, (b) continuous flooding with few intermissions, (c) use of nitrogen fertilizers at 176 kg N ha-1, and (d) application of herbicides (active ingredients benzofenap and clomazone). Herbicides were not applied in a small part of the field isolated by bunds (C-NH treatment) in order to assess possible limiting effects of herbicides on algae growth. Climatic data, measurements of rice crop characteristics and water quality of the ponded water in the C-H part of the experimental field were also obtained in order to assess the limiting effects of light, temperature and nutrients based on a modelling approach. Green algae were found to be dominant in the specific system. Considering the two treatments, the results showed that herbicides did not affect algae growth probably due to the short period of exposure followed by the continuous flooding. Nutrients fixation by algae for C-H followed the order C (52.1 %) > Ca (5.6 %) > K (3.5 %) > N (2.4 %) > Mg (0.3 %) ≈ Na (0.3 %) > P (0.24 %) with a final dry biomass production at 1,118 kg ha-1. Based on the measurements and model simulations the most limiting factors under the regional conventional practices of rice cultivation were the temperature at the initial and final stage of rice growing season, the light when the leaf area index of rice was >2 and phosphorus concentration in the ponded water. The mean algae growth rate during the flooding period was estimated at 8.2 kg ha-1 day-1, while the maximum rate was estimated at 15.9 kg ha-1 day-1 at the initial growth stages of rice before the beginning of intense light limitations from rice crop coverage
Evaluating a new homogeneous total ozone climate data record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A
The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D′Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 ± 1% level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1–3% requirement of the European Space Agency's Ozone Climate Change Initiative project