26 research outputs found

    On regional drought estimation and analysis

    No full text

    Indexing XML Data Stored in a Relational Database

    Get PDF

    On clique-colouring of graphs with few P4’s

    No full text
    Abstract Let G=(V,E) be a graph with n vertices. A clique-colouring of a graph is a colouring of its vertices such that no maximal clique of size at least two is monocoloured. A k-clique-colouring is a clique-colouring that uses k colours. The clique-chromatic number of a graph G is the minimum k such that G has a k-clique-colouring. In this paper we will use the primeval decomposition technique to find the clique-chromatic number and the clique-colouring of well known classes of graphs that in some local sense contain few P 4's. In particular we shall consider the classes of extended P 4-laden graphs, p-trees (graphs which contain exactly n−3 P 4's) and (q,q−3)-graphs, q≥7, such that no set of at most q vertices induces more that q−3 distincts P 4's. As corollary we shall derive the clique-chromatic number and the clique-colouring of the classes of cographs, P 4-reducible graphs, P 4-sparse graphs, extended P 4-reducible graphs, extended P 4-sparse graphs, P 4-extendible graphs, P 4-lite graphs, P 4-tidy graphs and P 4-laden graphs that are included in the class of extended P 4-laden graphs
    corecore