219 research outputs found
Surface structure of Quark stars with magnetic fields
We investigate the impact of magnetic fields on the electron distribution in
the electrosphere of quark stars. For moderately strong magnetic fields G, quantization effects are generally weak due to the large number
density of electrons at surface, but can nevertheless affect the spectral
features of quark stars. We outline the main observational characteristics of
quark stars as determined by their surface emission, and briefly discuss their
formation in explosive events termed Quark-Novae, which may be connected to the
-process.Comment: 9 pages, 3 figures. Contribution to the proceedings of the IXth
Workshop on High Energy Physics Phenomenology (WHEPP-9), Bhubaneswar, India,
3-14 Jan. 200
Three-Particle Correlations in Simple Liquids
We use video microscopy to follow the phase-space trajectory of a
two-dimensional colloidal model liquid and calculate three-point correlation
functions from the measured particle configurations. Approaching the
fluid-solid transition by increasing the strength of the pair-interaction
potential, one observes the gradual formation of a crystal-like local order due
to triplet correlations, while being still deep inside the fluid phase.
Furthermore, we show that in a strongly interacting system the Born-Green
equation can be satisfied only with the full triplet correlation function but
not with three-body distribution functions obtained from superposing
pair-correlations (Kirkwood superposition approximation).Comment: 4 pages, submitted to PRL, experimental paper, 2nd version: Fig.1 and
two new paragraphs have been adde
Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes
It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection
Consistent alpha-cluster description of the 12C (0^+_2) resonance
The near-threshold 12C (0^+_2) resonance provides unique possibility for fast
helium burning in stars, as predicted by Hoyle to explain the observed
abundance of elements in the Universe. Properties of this resonance are
calculated within the framework of the alpha-cluster model whose two-body and
three-body effective potentials are tuned to describe the alpha - alpha
scattering data, the energies of the 0^+_1 and 0^+_2 states, and the
0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2
state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition
radius are found in remarkable agreement with the experimental data. The
0^+_2-state structure is described as a system of three alpha-particles
oscillating between the ground-state-like configuration and the elongated chain
configuration whose probability exceeds 0.9
Neutrino opacity in magnetised hot and dense nuclear matter
We study the neutrino interaction rates in hot matter at high densities in
the presence of uniform magnetic field. The neutrino cross-sections involving
both the charged current absorption and neutral current scattering reactions on
baryons and leptons have been considered. We have in particular considered the
interesting case when the magnetic field is strong enough to completely
polarise the protons and electrons in supernovae and neutron stars. The opacity
in such a situation is considerably modified and the cross-section develops
anisotropy. This has implications for phenomenon invoked in the literature to
explain the observed pulsar kicks.Comment: 22 latex pages and 7 postscript figure
Dense nuclear matter in a strong magnetic field
We investigate in a relativistic Hartree theory the gross properties of cold
symmetric nuclear matter and nuclear matter in beta equilibrium under the
influence of strong magnetic fields. If the field strengths are above the
critical values for electrons and protons, the respective phase spaces are
strongly modified. This results in additional binding of the systems with
distinctively softer equations of state compared to the field free cases. For
magnetic field Gauss and beyond, the nuclear matter in beta
equilibrium practically converts into a stable proton rich matter.Comment: 13 pages, Revtex, figure include
Hydrogen Phases on the Surface of a Strongly Magnetized Neutron Star
The outermost layers of some neutron stars are likely to be dominated by
hydrogen, as a result of fast gravitational settling of heavier elements. These
layers directly mediate thermal radiation from the stars, and determine the
characteristics of X-ray/EUV spectra. For a neutron star with surface
temperature T\lo 10^6 K and magnetic field B\go 10^{12} G, various forms of
hydrogen can be present in the envelope, including atom, poly-molecules, and
condensed metal. We study the physical properties of different hydrogen phases
on the surface of a strongly magnetized neutron star for a wide range of field
strength and surface temperature . Depending on the values of and
, the outer envelope can be either in a nondegenerate gaseous phase or in a
degenerate metallic phase. For T\go 10^5 K and moderately strong magnetic
field, B\lo 10^{13} G, the envelope is nondegenerate and the surface material
gradually transforms into a degenerate Coulomb plasma as density increases. For
higher field strength, G, there exists a first-order phase
transition from the nondegenerate gaseous phase to the condensed metallic
phase. The column density of saturated vapor above the metallic hydrogen
decreases rapidly as the magnetic field increases or/and temperature decreases.
Thus the thermal radiation can directly emerge from the degenerate metallic
hydrogen surface. The characteristics of surface X-ray/EUV emission for
different phases are discussed. A separate study concerning the possibility of
magnetic field induced nuclear fusion of hydrogen on the neutron star surface
is also presented.Comment: TeX, 35 pages including 6 postscript figures. To be published in Ap
Triplet correlations in two-dimensional colloidal model liquids
Three-body distribution functions in classical fluids have been theoretically
investigated many times, but have never been measured directly. We present
experimental three-point correlation functions that are computed from particle
configurations measured by means of video-microscopy in two types of
quasi-two-dimensional colloidal model fluids: a system of charged colloidal
particles and a system of paramagnetic colloids. In the first system the
particles interact via a Yukawa potential, in the second via a potential
. We find for both systems very similar results: on increasing
the coupling between the particles one observes the gradual formation of a
crystal-like local order due to triplet correlations, even though the system is
still deep inside the fluid phase. These are mainly packing effects as is
evident from the close resemblance between the results for the two systems
having completely different pair-interaction potentials.Comment: many pages, 8 figures, contribution to the special issue in J.Phys.
Cond. Mat. of the CECAM meeting in LYON ''Many-body....'
Radial Oscillations of Neutron Stars in Strong Magnetic Fields
The eigen frequencies of radial pulsations of neutron stars are calculated in
a strong magnetic field. At low densities we use the magnetic BPS equation of
state(EOS) similar to that obtained by Lai and Shapiro while at high densities
the EOS obtained from the relativistic nuclear mean field theory is taken and
extended to include strong magnetic field. It is found that magnetised neutron
stars support higher maximum mass where as the effect of magnetic field on
radial stability for observed neutron star masses is minimal.Comment: latex2e file with five postscript figure
- …