133 research outputs found
A synthesis of sand seas throughout the world
There are no author-identified significant results in this report
LongâWavelength Sinuosity of Linear Dunes on Earth and Titan and the Effect of Underlying Topography
AbstractOn both Earth and Titan, some linear dunefields are characterized by curvilinear patterning atypical of the regularity and straightness of typical longitudinal dunefields. We use remotely sensed imagery and an automated dune crestline detection algorithm to analyze the controls on spatial patterning. Here it is shown that topography can influence the patterning, as dune alignments bend to deflect downslope under the influence of gravity. The effect is pronounced in a terrestrial dunefield (the Great Sandy desert, Australia) where substantial topography underlies, but is absent where the dunefield is underlain by subdued relief (southwestern Kalahari). This knowledge allows the inference of subtle topographic changes underlying dunefields from dunefield patterning, where other sources of elevation data may be absent. This methodology is explored using the Belet Sand Sea of Titan, where likely areas of topographic change at resolutions finer than those currently available from radar altimetry are inferred.</jats:p
Dune formation on the present Mars
We apply a model for sand dunes to calculate formation of dunes on Mars under
the present Martian atmospheric conditions. We find that different dune shapes
as those imaged by Mars Global Surveyor could have been formed by the action of
sand-moving winds occuring on today's Mars. Our calculations show, however,
that Martian dunes could be only formed due to the higher efficiency of Martian
winds in carrying grains into saltation. The model equations are solved to
study saltation transport under different atmospheric conditions valid for
Mars. We obtain an estimate for the wind speed and migration velocity of
barchan dunes at different places on Mars. From comparison with the shape of
bimodal sand dunes, we find an estimate for the timescale of the changes in
Martian wind regimes.Comment: 16 pages, 12 figure
Biogenic crust dynamics on sand dunes
Sand dunes are often covered by vegetation and biogenic crusts. Despite their
significant role in dune stabilization, biogenic crusts have rarely been
considered in studies of dune dynamics. Using a simple model, we study the
existence and stability ranges of different dune-cover states along gradients
of rainfall and wind power. Two ranges of alternative stable states are
identified: fixed crusted dunes and fixed vegetated dunes at low wind power,
and fixed vegetated dunes and active dunes at high wind power. These results
suggest a cross-over between two different forms of desertification
Improved Experimental Limits on the Production of Magnetic Monopoles
We present new limits on low mass accelerator-produced point-like Dirac
magnetic monopoles trapped and bound in matter surrounding the D\O collision
region of the Tevatron at Fermilab (experiment E-882). In the context of a
Drell-Yan mechanism, we obtain cross section limits for the production of
monopoles with magnetic charge values of 1, 2, 3, and 6 times the minimum Dirac
charge of the order of picobarns, some hundred times smaller than found in
similar previous Fermilab searches. Mass limits inferred from these cross
section limits are presented.Comment: 5 pages, 4 eps figures, REVTe
Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron
We present 90% confidence level limits on magnetic monopole production at the
Fermilab Tevatron from three sets of samples obtained from the D0 and CDF
detectors each exposed to a proton-antiproton luminosity of
(experiment E-882). Limits are obtained for the production cross-sections and
masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and
bound in material surrounding the D0 and CDF collision regions. In the absence
of a complete quantum field theory of magnetic charge, we estimate these limits
on the basis of a Drell-Yan model. These results (for magnetic charge values of
1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously
published bounds.Comment: 18 pages, 17 figures, REVTeX
Recommended from our members
Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites
Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed
Recommended from our members
Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p <.05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3â9; median total sample = 1,279.5, range = 276â3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Îr =.002 or.014, depending on analytic approach). The median effect size for the revised protocols (r =.05) was similar to that of the RP:P protocols (r =.04) and the original RP:P replications (r =.11), and smaller than that of the original studies (r =.37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r =.07, range =.00â.15) were 78% smaller, on average, than the original effect sizes (median r =.37, range =.19â.50)
Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability
Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)
Recommended from our members
Basic Research Needs for Countering Terrorism
To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terroris
- âŠ