32 research outputs found

    Large quantum gravity effects and nonlocal variables

    Get PDF
    We reconsider here the model where large quantum gravity effects were first found, but now in its Null Surface Formulation (NSF). We find that although the set of coherent states for ZZ, the basic variable of NSF, is as restricted as it is the one for the metric, while some type of small deviations from these states may cause huge fluctuations on the metric, the corresponding fluctuations on ZZ remain small.Comment: 4 pages, accepted in PR

    Einstein's equations in Ashtekar's variables constitute a symmetric hyperbolic system

    Get PDF
    We show that the 3+1 vacuum Einstein field equations in Ashtekar's variables constitutes a first order symmetric hyperbolic system for arbitrary but fixed lapse and shift fields, by suitable adding to the system terms proportional to the constraint equations.Comment: 4 pages, revte

    On the Constant that Fixes the Area Spectrum in Canonical Quantum Gravity

    Get PDF
    The formula for the area eigenvalues that was obtained by many authors within the approach known as loop quantum gravity states that each edge of a spin network contributes an area proportional to sqrt{j(j+1)} times Planck length squared to any surface it transversely intersects. However, some confusion exists in the literature as to a value of the proportionality coefficient. The purpose of this rather technical note is to fix this coefficient. We present a calculation which shows that in a sector of quantum theory based on the connection A=Gamma-gamma*K, where Gamma is the spin connection compatible with the triad field, K is the extrinsic curvature and gamma is Immirzi parameter, the value of the multiplicative factor is 8*pi*gamma. In other words, each edge of a spin network contributes an area 8*pi*gamma*l_p^2*sqrt{j(j+1)} to any surface it transversely intersects.Comment: Revtex, 7 pages, no figure

    Quantum Geometry and Black Hole Entropy

    Get PDF
    A `black hole sector' of non-perturbative canonical quantum gravity is introduced. The quantum black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the horizon. It is shown that the entropy of a large non-rotating black hole is proportional to its horizon area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the same choice of the Immirzi parameter, this result also holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal.Comment: Revtex, 8 pages, 1 figur

    Quantum Aspects of Black Hole Entropy

    Get PDF
    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein-Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based N=2 supergravity are also discussed, albeit more briefly.Comment: 13 Pages Revtex with 3 eps figures; based on plenary talk given at the International Conference on Gravitation and Cosmology, Kharagpur, India, January, 2000 One reference adde

    Q^\hat{Q} operator for canonical quantum gravity

    Full text link
    We study the properties of Q^[ω]\hat{Q}[\omega] operator on the kinematical Hilbert space H{\cal H} for canonical quantum gravity. Its complete spectrum with respect to the spin network basis is obtained. It turns out that Q^[ω]\hat{Q}[\omega] is diagonalized in this basis, and it is a well defined self-adjoint operator on H{\cal H}. The same conclusions are also tenable on the SU(2) gauge invariant Hilbert space with the gauge invariant spin network basis.Comment: 10 pages, minor modefication, reference update

    3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations

    Full text link
    The equivalence problem for second order ODEs given modulo point transformations is solved in full analogy with the equivalence problem of nondegenerate 3-dimensional CR structures. This approach enables an analog of the Feffereman metrics to be defined. The conformal class of these (split signature) metrics is well defined by each point equivalence class of second order ODEs. Its conformal curvature is interpreted in terms of the basic point invariants of the corresponding class of ODEs

    Spacetime as a Feynman diagram: the connection formulation

    Get PDF
    Spin foam models are the path integral counterparts to loop quantized canonical theories. In the last few years several spin foam models of gravity have been proposed, most of which live on finite simplicial lattice spacetime. The lattice truncates the presumably infinite set of gravitational degrees of freedom down to a finite set. Models that can accomodate an infinite set of degrees of freedom and that are independent of any background simplicial structure, or indeed any a priori spacetime topology, can be obtained from the lattice models by summing them over all lattice spacetimes. Here we show that this sum can be realized as the sum over Feynman diagrams of a quantum field theory living on a suitable group manifold, with each Feynman diagram defining a particular lattice spacetime. We give an explicit formula for the action of the field theory corresponding to any given spin foam model in a wide class which includes several gravity models. Such a field theory was recently found for a particular gravity model [De Pietri et al, hep-th/9907154]. Our work generalizes this result as well as Boulatov's and Ooguri's models of three and four dimensional topological field theories, and ultimately the old matrix models of two dimensional systems with dynamical topology. A first version of our result has appeared in a companion paper [gr-qc\0002083]: here we present a new and more detailed derivation based on the connection formulation of the spin foam models.Comment: 32 pages, 2 figure

    Loop Quantum Gravity

    Get PDF
    The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. The research in loop quantum gravity forms today a vast area, ranging from mathematical foundations to physical applications. Among the most significative results obtained are: (i) The computation of the physical spectra of geometrical quantities such as area and volume; which yields quantitative predictions on Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, overcompleteness of the loop basis, implementation of reality conditions) have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34 page

    Theorems on existence and global dynamics for the Einstein equations

    Get PDF
    This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living Rev. Rel. 5 (2002)
    corecore