385 research outputs found

    Quantum energy inequalities and local covariance II: Categorical formulation

    Full text link
    We formulate Quantum Energy Inequalities (QEIs) in the framework of locally covariant quantum field theory developed by Brunetti, Fredenhagen and Verch, which is based on notions taken from category theory. This leads to a new viewpoint on the QEIs, and also to the identification of a new structural property of locally covariant quantum field theory, which we call Local Physical Equivalence. Covariant formulations of the numerical range and spectrum of locally covariant fields are given and investigated, and a new algebra of fields is identified, in which fields are treated independently of their realisation on particular spacetimes and manifestly covariant versions of the functional calculus may be formulated.Comment: 27 pages, LaTeX. Further discussion added. Version to appear in General Relativity and Gravitatio

    Quantum energy inequalities in two dimensions

    Full text link
    Quantum energy inequalities (QEIs) were established by Flanagan for the massless scalar field on two-dimensional Lorentzian spacetimes globally conformal to Minkowski space. We extend his result to all two-dimensional globally hyperbolic Lorentzian spacetimes and use it to show that flat spacetime QEIs give a good approximation to the curved spacetime results on sampling timescales short in comparison with natural geometric scales. This is relevant to the application of QEIs to constrain exotic spacetime metrics.Comment: 4 pages, REVTeX. This is an expanded version of a portion of gr-qc/0409043. To appear in Phys Rev

    An absolute quantum energy inequality for the Dirac field in curved spacetime

    Full text link
    Quantum Weak Energy Inequalities (QWEIs) are results which limit the extent to which the smeared renormalised energy density of a quantum field can be negative. On globally hyperbolic spacetimes the massive quantum Dirac field is known to obey a QWEI in terms of a reference state chosen arbitrarily from the class of Hadamard states; however, there exist spacetimes of interest on which state-dependent bounds cannot be evaluated. In this paper we prove the first QWEI for the massive quantum Dirac field on four dimensional globally hyperbolic spacetime in which the bound depends only on the local geometry; such a QWEI is known as an absolute QWEI

    A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime

    Full text link
    Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollick's bound, the bound presented here holds for all (non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur

    On the spin-statistics connection in curved spacetimes

    Full text link
    The connection between spin and statistics is examined in the context of locally covariant quantum field theory. A generalization is proposed in which locally covariant theories are defined as functors from a category of framed spacetimes to a category of *-algebras. This allows for a more operational description of theories with spin, and for the derivation of a more general version of the spin-statistics connection in curved spacetimes than previously available. The proof involves a "rigidity argument" that is also applied in the standard setting of locally covariant quantum field theory to show how properties such as Einstein causality can be transferred from Minkowski spacetime to general curved spacetimes.Comment: 17pp. Contribution to the proceedings of the conference "Quantum Mathematical Physics" (Regensburg, October 2014

    Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime

    Full text link
    Using the methods developed by Fewster and colleagues, we derive a quantum inequality for the free massive spin-32{3\over 2} Rarita-Schwinger fields in the four dimensional Minkowski spacetime. Our quantum inequality bound for the Rarita-Schwinger fields is weaker, by a factor of 2, than that for the spin-12{1\over 2} Dirac fields. This fact along with other quantum inequalities obtained by various other authors for the fields of integer spin (bosonic fields) using similar methods lead us to conjecture that, in the flat spacetime, separately for bosonic and fermionic fields, the quantum inequality bound gets weaker as the the number of degrees of freedom of the field increases. A plausible physical reason might be that the more the number of field degrees of freedom, the more freedom one has to create negative energy, therefore, the weaker the quantum inequality bound.Comment: Revtex, 11 pages, to appear in PR

    Averaged Energy Inequalities for the Non-Minimally Coupled Classical Scalar Field

    Full text link
    The stress energy tensor for the classical non-minimally coupled scalar field is known not to satisfy the point-wise energy conditions of general relativity. In this paper we show, however, that local averages of the classical stress energy tensor satisfy certain inequalities. We give bounds for averages along causal geodesics and show, e.g., that in Ricci-flat background spacetimes, ANEC and AWEC are satisfied. Furthermore we use our result to show that in the classical situation we have an analogue to the phenomenon of quantum interest. These results lay the foundations for analogous energy inequalities for the quantised non-minimally coupled fields, which will be discussed elsewhere.Comment: 8 pages, RevTeX4. Minor typos corrected; version to appear in Phys Rev

    Quantum inequalities and `quantum interest' as eigenvalue problems

    Get PDF
    Quantum inequalities (QI's) provide lower bounds on the averaged energy density of a quantum field. We show how the QI's for massless scalar fields in even dimensional Minkowski space may be reformulated in terms of the positivity of a certain self-adjoint operator - a generalised Schroedinger operator with the energy density as the potential - and hence as an eigenvalue problem. We use this idea to verify that the energy density produced by a moving mirror in two dimensions is compatible with the QI's for a large class of mirror trajectories. In addition, we apply this viewpoint to the `quantum interest conjecture' of Ford and Roman, which asserts that the positive part of an energy density always overcompensates for any negative components. For various simple models in two and four dimensions we obtain the best possible bounds on the `quantum interest rate' and on the maximum delay between a negative pulse and a compensating positive pulse. Perhaps surprisingly, we find that - in four dimensions - it is impossible for a positive delta-function pulse of any magnitude to compensate for a negative delta-function pulse, no matter how close together they occur.Comment: 18 pages, RevTeX. One new result added; typos fixed. To appear in Phys. Rev.

    Endomorphisms and automorphisms of locally covariant quantum field theories

    Full text link
    In the framework of locally covariant quantum field theory, a theory is described as a functor from a category of spacetimes to a category of *-algebras. It is proposed that the global gauge group of such a theory can be identified as the group of automorphisms of the defining functor. Consequently, multiplets of fields may be identified at the functorial level. It is shown that locally covariant theories that obey standard assumptions in Minkowski space, including energy compactness, have no proper endomorphisms (i.e., all endomorphisms are automorphisms) and have a compact automorphism group. Further, it is shown how the endomorphisms and automorphisms of a locally covariant theory may, in principle, be classified in any single spacetime. As an example, the endomorphisms and automorphisms of a system of finitely many free scalar fields are completely classified.Comment: v2 45pp, expanded to include additional results; presentation improved and an error corrected. To appear in Rev Math Phy
    corecore