52,306 research outputs found

    Secure thermal infrared communications using engineered blackbody radiation

    Get PDF
    The thermal (emitted) infrared frequency bands, from 20–40 THz and 60–100 THz, are best known for applications in thermography. This underused and unregulated part of the spectral range offers opportunities for the development of secure communications. The ‘THz Torch' concept was recently presented by the authors. This technology fundamentally exploits engineered blackbody radiation, by partitioning thermally-generated spectral noise power into pre-defined frequency channels; the energy in each channel is then independently pulsed modulated and multiplexing schemes are introduced to create a robust form of short-range secure communications in the far/mid infrared. To date, octave bandwidth (25–50 THz) single-channel links have been demonstrated with 380 bps speeds. Multi-channel ‘THz Torch' frequency division multiplexing (FDM) and frequency-hopping spread-spectrum (FHSS) schemes have been proposed, but only a slow 40 bps FDM scheme has been demonstrated experimentally. Here, we report a much faster 1,280 bps FDM implementation. In addition, an experimental proof-of-concept FHSS scheme is demonstrated for the first time, having a 320 bps data rate. With both 4-channel multiplexing schemes, measured bit error rates (BERs) of < 10(−6) are achieved over a distance of 2.5 cm. Our approach represents a new paradigm in the way niche secure communications can be established over short links

    A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object

    Get PDF
    A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac

    Correlation Between the Halo Concentration (c) and the Virial Mass (Mvir) Determined from X-ray Clusters

    Get PDF
    Numerical simulations of structure formation have suggested that there exists a good correlation between the halo concentration c (or the characteristic density delta_c) and the virial mass Mvir for any virialized dark halo described by the Navarro, Frenk & White (1995) density profile. In this Letter, we present an observational determination of the c-Mvir (or delta_c-Mvir) relation in the mass range of 10^14< Mvir <10^16 (solar mass) using a sample of 63 X-ray luminous clusters. The best-fit power law relation, which is roughly independent of the values of Omega_M and Lambda, is c propto Mvir^(-0.5) or delta_c propto Mvir^(-1.2), indicating n=-0.7 for a scale-free power spectrum of the primordial density fluctuations. We discuss the possible reasons for the conflict with the predictions by typical CDM models such as SCDM, LCDM and OCDM.Comment: 13 pages, 1 figure, two tables. Accepted for publication in ApJ

    Calculations of polarizabilities and hyperpolarizabilities for the Be+^+ ion

    Get PDF
    The polarizabilities and hyperpolarizabilities of the Be+^+ ion in the 22S2^2S state and the 22P2^2P state are determined. Calculations are performed using two independent methods: i) variationally determined wave functions using Hylleraas basis set expansions and ii) single electron calculations utilizing a frozen-core Hamiltonian. The first few parameters in the long-range interaction potential between a Be+^+ ion and a H, He, or Li atom, and the leading parameters of the effective potential for the high-LL Rydberg states of beryllium were also computed. All the values reported are the results of calculations close to convergence. Comparisons are made with published results where available.Comment: 18 pp; added details to Sec. I

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur
    • 

    corecore