794 research outputs found
Role of electron-electron and electron-phonon interaction effect in the optical conductivity of VO2
We have investigated the charge dynamics of VO2 by optical reflectivity
measurements. Optical conductivity clearly shows a metal-insulator transition.
In the metallic phase, a broad Drude-like structure is observed. On the other
hand, in the insulating phase, a broad peak structure around 1.3 eV is
observed. It is found that this broad structure observed in the insulating
phase shows a temperature dependence. We attribute this to the electron-phonon
interaction as in the photoemission spectra.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.
Quantum Melting of the Charge Density Wave State in 1T-TiSe2
We report a Raman scattering study of low-temperature, pressure-induced
melting of the CDW phase of 1T-TiSe2. Our Raman scattering measurements reveal
that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar,
the pressure dependence of the CDW amplitude mode energies and intensities are
indicative of a ``crystalline'' CDW regime; (ii) for 5 < P < 25 kbar, there is
a decrease in the CDW amplitude mode energies and intensities with increasing
pressure that suggests a regime in which the CDW softens, and may decouple from
the lattice; and (iii) for P>25 kbar, the absence of amplitude modes reveals a
melted CDW regime.Comment: 5 pages, 4 figure
Two-magnon Raman scattering in insulating cuprates: Modifications of the effective Raman operator
Calculations of Raman scattering intensities in spin 1/2 square-lattice
Heisenberg model, using the Fleury-Loudon-Elliott theory, have so far been
unable to describe the broad line shape and asymmetry of the two magnon peak
found experimentally in the cuprate materials. Even more notably, the
polarization selection rules are violated with respect to the
Fleury-Loudon-Elliott theory. There is comparable scattering in and
geometries, whereas the theory would predict scattering in only
geometry. We review various suggestions for this discrepency and
suggest that at least part of the problem can be addressed by modifying the
effective Raman Hamiltonian, allowing for two-magnon states with arbitrary
total momentum. Such an approach based on the Sawatzsky-Lorenzana theory of
optical absorption assumes an important role of phonons as momentum sinks. It
leaves the low energy physics of the Heisenberg model unchanged but
substantially alters the Raman line-shape and selection rules, bringing the
results closer to experiments.Comment: 7 pages, 6 figures, revtex. Contains some minor revisions from
previous versio
Two-magnon Raman scattering in spin-ladder geometries and the ratio of rung and leg exchange constants
We discuss ways in which the ratio of exchange constants along the rungs and
legs of a spin-ladder material influences the two-magnon Raman scattering
spectra and hence can be determined from it. We show that within the
Fleury-Loudon-Elliott approach, the Raman line-shape does not change with
polarization geometries. This lineshape is well known to be difficult to
calculate accurately from theory. However, the Raman scattering intensities do
vary with polarization geometries, which are easy to calculate. With some
assumptions about the Raman scattering Hamiltonian, the latter can be used to
estimate the ratio of exchange constants. We apply these results to Sugai's
recent measurements of Raman scattering from spin-ladder materials such as
LaCaCuO and SrCuO.Comment: 5 pages, revtex. Latest version focuses on ladder materials, with a
detailed examination of the role of Heisenberg-like coupling constants which
appear in the Fleury-Loudon-Elliott scattering operator but are rarely
discussed in the literatur
Two--magnon scattering and the spin--phonon interaction beyond the adiabatic approximation
We consider a model of Raman scattering for a two--dimensional
Heisenberg Anti-Ferromagnet which includes a {\it dynamical} spin--phonon
interaction. We observe a broadening of the line shape due to increased
coupling with excited high--energy spin states. Our results are close to a
model of random static exchange interactions, first introduced in this context
by Haas {\it et al.} [J. Appl. Phys. {\bf 75}, 6340, (1994)], which, when
extended to large numbers of spins, explains experiments in the parent
insulating compounds of high- superconductors.Comment: 14 pages (revtex format), 8 postscript figure
Charge and Spin Dynamics of an Ordered Stripe Phase in La_(1 2/3)Sr_(1/3)NiO_4 by Raman Spectroscopy
For La_(1 2/3)Sr_(1/3)NiO_4 -- a commensurately doped Mott-Hubbard system --
charge- and spin-ordering in a stripe phase has been investigated by phononic
and magnetic Raman scattering. Formation of a superlattice and an opening of a
pseudo-gap in the electron-hole excitation spectra as well as two types of
double-spin excitations -- within the antiferromagnetic domain and across the
domain wall -- are observed below the charge-ordering transition. The
temperature dependence suggests that the spin ordering is driven by charge
ordering and that fluctuating stripes persist above the ordering transition.Comment: 5 pages, 4 EPS figures; to appear in Phys. Rev. Let
Revisiting the drivers of acoustic similarities in tropical anuran assemblages
Acoustic signaling is key in mediating mate-choice, which directly impacts individual fitness. Because background noise and habitat structure can impair signal transmission, the acoustic space of mixed-species assemblages has long been hypothesized to reflect selective pressures against signal interference and degradation. However, other potential drivers that received far less attention can drive similar outputs on the acoustic space. Phylogenetic niche conservatism and allometric constraints may also modulate species acoustic features, and the acoustic space of communities could be a side-effect of ecological assembly processes involving other traits (e.g. environmental filtering). Additionally, the acoustic space can also reflect the sorting of species relying on public information through extended communication networks. Using an integrative approach, we revisit the potential drivers of the acoustic space by addressing the distribution of acoustic traits, body size, and phylogenetic relatedness in tropical anuran assemblages across gradients of environmental heterogeneity in the Pantanal wetlands. We found the overall acoustic space to be aggregated compared with null expectations, even when accounting for confounding effects of body size. Across assemblages, acoustic and phylogenetic differences were positively related, while acoustic and body size similarities were negatively related, although to a minor extent. We suggest that acoustic partitioning, acoustic adaptation, and allometric constraints play a minor role in shaping the acoustic output of tropical anuran assemblages and that phylogenetic niche conservatism and public information use would influence between-assemblage variation. Our findings highlight an overlooked multivariate nature of the acoustic dimension and underscore the importance of including the ecological context of communities to understand drivers of the acoustic space
Raman Response of Magnetic Excitations in Cuprate Ladders and Planes
An unified picture for the Raman response of magnetic excitations in cuprate
spin-ladder compounds is obtained by comparing calculated two-triplon Raman
line-shapes with those of the prototypical compounds SrCu2O3 (Sr123),
Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the
two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp
plus an additional four-spin interaction J_cyc. Within this model Sr123 and
Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2,
J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for
La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp
two-triplon peak in the ladder materials compared to the undoped
two-dimensional cuprates can be traced back to the anisotropy of the magnetic
exchange in rung and leg direction. With the results obtained for the isotropic
ladder we calculate the Raman line-shape of a two-dimensional square lattice
using a toy model consisting of a vertical and a horizontal ladder. A direct
comparison of these results with Raman experiments for the two-dimensional
cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good
agreement for the dominating two-triplon peak. We conclude that short range
quantum fluctuations are dominating the magnetic Raman response in both,
ladders and planes. We discuss possible scenarios responsible for the
high-energy spectral weight of the Raman line-shape, i.e. phonons, the
triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure
- …