1,820 research outputs found

    Giant strongly connected component of directed networks

    Full text link
    We describe how to calculate the sizes of all giant connected components of a directed graph, including the {\em strongly} connected one. Just to the class of directed networks, in particular, belongs the World Wide Web. The results are obtained for graphs with statistically uncorrelated vertices and an arbitrary joint in,out-degree distribution P(ki,ko)P(k_i,k_o). We show that if P(ki,ko)P(k_i,k_o) does not factorize, the relative size of the giant strongly connected component deviates from the product of the relative sizes of the giant in- and out-components. The calculations of the relative sizes of all the giant components are demonstrated using the simplest examples. We explain that the giant strongly connected component may be less resilient to random damage than the giant weakly connected one.Comment: 4 pages revtex, 4 figure

    A novel configuration model for random graphs with given degree sequence

    Full text link
    Recently, random graphs in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices have attracted much attention. Here, we present a specific realization of a class of random network models in which the connection probability between two vertices (i,j) is a specific function of degrees ki and kj. In the framework of the configuration model of random graphs, we find analytical expressions for the degree correlation and clustering as a function of the variance of the desired degree distribution. The expressions obtained are checked by means of numerical simulations. Possible applications of our model are discussed.Comment: 7 pages, 3 figure

    Laplacian spectra of complex networks and random walks on them: Are scale-free architectures really important?

    Full text link
    We study the Laplacian operator of an uncorrelated random network and, as an application, consider hopping processes (diffusion, random walks, signal propagation, etc.) on networks. We develop a strict approach to these problems. We derive an exact closed set of integral equations, which provide the averages of the Laplacian operator's resolvent. This enables us to describe the propagation of a signal and random walks on the network. We show that the determining parameter in this problem is the minimum degree qmq_m of vertices in the network and that the high-degree part of the degree distribution is not that essential. The position of the lower edge of the Laplacian spectrum λc\lambda_c appears to be the same as in the regular Bethe lattice with the coordination number qmq_m. Namely, λc>0\lambda_c>0 if qm>2q_m>2, and λc=0\lambda_c=0 if qm2q_m\leq2. In both these cases the density of eigenvalues ρ(λ)0\rho(\lambda)\to0 as λλc+0\lambda\to\lambda_c+0, but the limiting behaviors near λc\lambda_c are very different. In terms of a distance from a starting vertex, the hopping propagator is a steady moving Gaussian, broadening with time. This picture qualitatively coincides with that for a regular Bethe lattice. Our analytical results include the spectral density ρ(λ)\rho(\lambda) near λc\lambda_c and the long-time asymptotics of the autocorrelator and the propagator.Comment: 25 pages, 4 figure

    Exact Solution for the Time Evolution of Network Rewiring Models

    Full text link
    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature including examples of Urn, Backgammon, and Balls-in-Boxes models, the Watts and Strogatz rewiring problem and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a Minority game also show features described by our model.Comment: This version contains a few footnotes not in published Phys.Rev.E versio

    A weighted configuration model and inhomogeneous epidemics

    Full text link
    A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight. It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R0R_0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account

    Ising Model on Networks with an Arbitrary Distribution of Connections

    Full text link
    We find the exact critical temperature TcT_c of the nearest-neighbor ferromagnetic Ising model on an `equilibrium' random graph with an arbitrary degree distribution P(k)P(k). We observe an anomalous behavior of the magnetization, magnetic susceptibility and specific heat, when P(k)P(k) is fat-tailed, or, loosely speaking, when the fourth moment of the distribution diverges in infinite networks. When the second moment becomes divergent, TcT_c approaches infinity, the phase transition is of infinite order, and size effect is anomalously strong.Comment: 5 page

    Quantitative Proteomic Profiling of Small Molecule Treated Mesenchymal Stem Cells Using Chemical Probes.

    Full text link
    The differentiation of human adipose derived stem cells toward a neural phenotype by small molecules has been a vogue topic in the last decade. The characterization of the produced cells has been explored on a broad scale, examining morphological and specific surface protein markers; however, the lack of insight into the expression of functional proteins and their interactive partners is required to further understand the extent of the process. The phenotypic characterization by proteomic profiling allows for a substantial in-depth analysis of the molecular machinery induced and directing the cellular changes through the process. Herein we describe the temporal analysis and quantitative profiling of neural differentiating human adipose-derived stem cells after sub-proteome enrichment using a bisindolylmaleimide chemical probe. The results show that proteins enriched by the Bis-probe were identified reproducibly with 133, 118, 126 and 89 proteins identified at timepoints 0, 1, 6 and 12, respectively. Each temporal timepoint presented several shared and unique proteins relative to neural differentiation and their interactivity. The major protein classes enriched and quantified were enzymes, structural and ribosomal proteins that are integral to differentiation pathways. There were 42 uniquely identified enzymes identified in the cells, many acting as hubs in the networks with several interactions across the network modulating key biological pathways. From the cohort, it was found by gene ontology analysis that 18 enzymes had direct involvement with neurogenic differentiation

    Network robustness and fragility: Percolation on random graphs

    Full text link
    Recent work on the internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes. Such deletions include, for example, the failure of internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process, but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.Comment: 4 pages, 2 figure

    Diluted antiferromagnet in a ferromagnetic enviroment

    Full text link
    The question of robustness of a network under random ``attacks'' is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is investigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed

    Evaluating the use of Apo-neocarzinostatin as a cell penetrating protein.

    Get PDF
    Protein-ligand complex neocarzinostatin (NCS) is a small, thermostable protein-ligand complex that is able to deliver its ligand cargo into live mammalian cells where it induces DNA damage. Apo-NCS is able to functionally display complementarity determining regions loops, and has been hypothesised to act as a cell-penetrating protein, which would make it an ideal scaffold for cell targeting, and subsequent intracellular delivery of small-molecule drugs. In order to evaluate apo-NCS as a cell penetrating protein, we have evaluated the efficiency of its internalisation into live HeLa cells using matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry and fluorescence microscopy. Following incubation of cells with apo-NCS, we observed no evidence of internalisation
    corecore