78 research outputs found
Expression of MAGE-1 and -3 genes and gene products in human hepatocellular carcinoma
MAGE gene family encodes peptides recognized by autologous cytotoxic T lymphocytes in a major histocompatibility complex (MHC) class-I restricted fashion. In the present study, we have performed reverse-transcription polymerase chain reaction (RT-PCR) for the genes, as well as immunohistochemical analysis and Western blotting of MAGE-1 and -3 proteins in 33 surgically resected hepatocellular carcinomas (HCCs). MAGE-1 and -3 mRNAs were constitutively expressed exclusively in 78 and 42% of HCCs respectively. On immunohistochemistry with monoclonal antibodies, 77B for MAGE-1 and 57B for MAGE-3, MAGE-1 and -3 proteins were recognized in cytoplasm of only six among 33 (18%) and two of 29 HCCs (7%) respectively. The distribution pattern was mostly focal in HCC nodules. By contrast, the Western blot analysis revealed that the MAGE-1 (46 kDa) and -3 proteins (48 kDa) were expressed in 80 and 60% of 15 HCCs examined respectively. The proteins of MAGE-1 and -3 were also expressed exclusively in HCCs regardless of the histological grading and clinical staging. Our results indicate that the detection of the genes by RT-PCR or the proteins by Western blotting is useful for differentiating early HCCs from non-cancerous lesions, and that the peptides derived from MAGE-1 and -3 proteins might be suitable targets for immunotherapy of human HCC. © 1999 Cancer Research Campaig
Control of Mitochondrial Morphology Through Differential Interactions of Mitochondrial Fusion and Fission Proteins
Mitochondria in mammals are organized into tubular networks that undergo frequent shape change. Mitochondrial fission and fusion are the main components mediating the mitochondrial shape change. Perturbation of the fission/fusion balance is associated with many disease conditions. However, underlying mechanisms of the fission/fusion balance are not well understood. Mitochondrial fission in mammals requires the dynamin-like protein DLP1/Drp1 that is recruited to the mitochondrial surface, possibly through the membrane-anchored protein Fis1 or Mff. Additional dynamin-related GTPases, mitofusin (Mfn) and OPA1, are associated with the outer and inner mitochondrial membranes, respectively, and mediate fusion of the respective membranes. In this study, we found that two heptad-repeat regions (HR1 and HR2) of Mfn2 interact with each other, and that Mfn2 also interacts with the fission protein DLP1. The association of the two heptad-repeats of Mfn2 is fusion inhibitory whereas a positive role of the Mfn2/DLP1 interaction in mitochondrial fusion is suggested. Our results imply that the differential binding of Mfn2-HR1 to HR2 and DLP1 regulates mitochondrial fusion and that DLP1 may act as a regulatory factor for efficient execution of both fusion and fission of mitochondria
Split T Cell Tolerance against a Self/Tumor Antigen: Spontaneous CD4+ but Not CD8+ T Cell Responses against p53 in Cancer Patients and Healthy Donors
Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events
The Effect of OPA1 on Mitochondrial Ca2+ Signaling
The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca2+ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca2+ to the transporters in the crista membrane and thus would enhance Ca2+ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca2+ signals evoked with K+ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca2+] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca2+ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca2+ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na+/Ca2+ and Ca2+/H+ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca2+ metabolism
- …