1,385 research outputs found

    Leptogenesis and Low energy CP violation, a link

    Get PDF
    How is CP violation of low energy related to CP violation required from baryon number asymmetry ? We give an example which shows a direct link between CP violation of neutrino oscillation and baryogenesis through leptogenesis.Comment: 3 pages and 2 figures, Talk presented at 4th Nufac02, July 1-6, 200

    Three Dimensional Heisenberg Spin Glass Models with and without Random Anisotropy

    Full text link
    We reexamine the spin glass (SG) phase transition of the ±J\pm J Heisenberg models with and without the random anisotropy DD in three dimensions (d=3d = 3) using complementary two methods, i.e., (i) the defect energy method and (ii) the Monte Carlo method. We reveal that the conventional defect energy method is not convincing and propose a new method which considers the stiffness of the lattice itself. Using the method, we show that the stiffness exponent θ\theta has a positive value (θ>0\theta > 0) even when D=0D = 0. Considering the stiffness at finite temperatures, we obtain the SG phase transition temperature of TSG0.19JT_{\rm SG} \sim 0.19J for D=0D = 0. On the other hand, a large scale MC simulation shows that, in contrary to the previous results, a scaling plot of the SG susceptibility χSG\chi_{\rm SG} for D=0D = 0 is obtained using almost the same transiton temperature of TSG0.18JT_{\rm SG} \sim 0.18J. Hence we believe that the SG phase transition occurs in the Heisenberg SG model in d=3d = 3.Comment: 15 pages, 9 figures, to be published in J. Phys.

    Pressure-tuned First-order Phase Transition and Accompanying Resistivity Anomaly in CeZn_{1-\delta}Sb_{2}

    Get PDF
    The Kondo lattice system CeZn_{0.66}Sb_{2} is studied by the electrical resistivity and ac magnetic susceptibility measurements at several pressures. At P=0 kbar, ferromagnetic and antiferromagnetic transitions appear at 3.6 and 0.8 K, respectively. The electrical resistivity at T_N dramatically changes from the Fisher-Langer type (ferromagnetic like) to the Suzaki-Mori type near 17 kbar, i.e., from a positive divergence to a negative divergence in the temperature derivative of the resistivity. The pressure-induced SM type anomaly, which shows thermal hysteresis, is easily suppressed by small magnetic field (1.9 kOe for 19.8 kbar), indicating a weakly first-order nature of the transition. By subtracting a low-pressure data set, we directly compare the resistivity anomaly with the SM theory without any assumption on backgrounds, where the negative divergence in d\rho/dT is ascribed to enhanced critical fluctuations in the presence of superzone gaps.Comment: 5 pages, 4 figures; journal-ref adde

    Single spin- and chiral-glass transition in vector spin glasses in three-dimensions

    Full text link
    Results of Monte Carlo simulations of XY and Heisenberg spin glass models in three dimensions are presented. A finite size scaling analysis of the correlation length of the spins and chiralities of both models shows that there is a single, finite-temperature transition at which both spins and chiralities order.Comment: 5 pages, 5 figures. Replaced by published versio

    Spin dynamical properties and orbital states of the layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (0.3 <= x < 0.5)

    Get PDF
    Low-temperature spin dynamics of the double-layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (LSMO327) was systematically studied in a wide hole concentration range (0.3 <= x < 0.5). The spin-wave dispersion, which is almost perfectly 2D, has two branches due to a coupling between layers within a double-layer. Each branch exhibits a characteristic intensity oscillation along the out-of-plane direction. We found that the in-plane spin stiffness constant and the gap between the two branches strongly depend on x. By fitting to calculated dispersion relations and cross sections assuming Heisenberg models, we have obtained the in-plane (J_para), intra-bilayer (J_perp) and inter-bilayer (J') exchange interactions at each x. At x=0.30, J_para=-4meV and J_perp=-5meV, namely almost isotropic and ferromagnetic. Upon increasing x, J_perp rapidly approaches zero while |J_para| increases slightly, indicating an enhancement of the planar magnetic anisotropy. At x=0.48, J_para reaches -9meV, while J_perp turns to +1meV indicating an antiferromagnetic interaction. Such a drastic change of the exchange interactions can be ascribed to the change of the relative stability of the d_x^2-y^2 and d_3z^2-r^2 orbital states upon doping. However, a simple linear combination of the two states results in an orbital state with an orthorhombic symmetry, which is inconsistent with the tetragonal symmetry of the crystal structure. We thus propose that an ``orbital liquid'' state realizes in LSMO327, where the charge distribution symmetry is kept tetragonal around each Mn site.Comment: 10 pages including 7 figure

    A Natural Framework for Bi-large Neutrino Mixing

    Get PDF
    In this letter we present a "natural" framework for obtaining bi-large neutrino mixing incorporating the FGY neutrino mass matrix ansatz. We show that an SU(2)×U(1)SU(2) \times U(1) family symmetry can provide the desired FGY neutrino mass ansatz in the MSSM. We also show how to obtain an approximate FGY ansatz in an SO(10) SUSY GUT. In this context, the same SU(2)×U(1)SU(2) \times U(1) family symmetry also generates the hierarchy of fermion masses as well as ameliorating SUSY flavor problems.Comment: 10 pages, no figures, extended discussion of standard model version including charged lepton analysi

    Parisi States in a Heisenberg Spin-Glass Model in Three Dimensions

    Full text link
    We have studied low-lying metastable states of the ±J\pm J Heisenberg model in two (d=2d=2) and three (d=3d=3) dimensions having developed a hybrid genetic algorithm. We have found a strong evidence of the occurrence of the Parisi states in d=3d=3 but not in d=2d=2. That is, in LdL^d lattices, there exist metastable states with a finite excitation energy of ΔEO(J)\Delta E \sim O(J) for LL \to \infty, and energy barriers ΔW\Delta W between the ground state and those metastable states are ΔWO(JLθ)\Delta W \sim O(JL^{\theta}) with θ>0\theta > 0 in d=3d=3 but with θ<0\theta < 0 in d=2d=2. We have also found droplet-like excitations, suggesting a mixed scenario of the replica-symmetry-breaking picture and the droplet picture recently speculated in the Ising SG model.Comment: 4 pages, 6 figure
    corecore