18 research outputs found

    Plasmodium falciparum infection induces dynamic changes in the erythrocyte phospho-proteome.

    Get PDF
    The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium

    The ATLAS MDT remote calibration centers

    Full text link
    The precision chambers of the ATLAS Muon Spectrometer are built with Monitored Drift Tubes (MDT). The requirement of high accuracy and low systematic error, to achieve a transverse momentum resolution of 10% at 1 TeV, can only be accomplished if the calibrations are known with an accuracy of 20 ÎĽm. The relation between the drift path and the measured time (the socalled r-t relation) depends on many parameters (temperature T, hit rate, gas composition, thresholds,...) subject to time variations. The r-t relation has to be measured from the data without the use of an external detector, using the autocalibration technique. This method relies on an iterative procedure applied to the same data sample, starting from a preliminary set of constants. The required precision can be achieved using a large (few thousand) number of non-parallel tracks crossing a region, called calibration region, i.e. the region of the MDT chamber sharing the same r-t relation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85421/1/jpconf10_219_022028.pd

    TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood

    Get PDF
    After invading red blood cells (RBCs), Plasmodium falciparum (Pf) can export its own proteins to the host membrane and activate endogenous channels that are present in the membrane of RBCs. This transport pathway involves the Voltage Dependent Anion Channel (VDAC). Moreover, ligands of the VDAC partner TranSlocator PrOtein (TSPO) were demonstrated to inhibit the growth of the parasite. We studied the expression of TSPO and VDAC isoforms in late erythroid precursors, examined the presence of these proteins in membranes of non-infected and infected human RBCs, and evaluated the efficiency of TSPO ligands in inhibiting plasmodium growth, transporting the haem analogue Zn-protoporphyrin-IX (ZnPPIX) and enhancing the accumulation of reactive oxygen species (ROS). TSPO and VDAC isoforms are differentially expressed on erythroid cells in late differentiation states. TSPO2 and VDAC are present in the membranes of mature RBCs in a unique protein complex that changes the affinity of TSPO ligands after Pf infection. TSPO ligands dose-dependently inhibited parasite growth, and this inhibition was correlated to ZnPPIX uptake and ROS accumulation in the infected RBCs. Our results demonstrate that TSPO ligands can induce Pf death by increasing the uptake of porphyrins through a TSPO2-VDAC complex, which leads to an accumulation of ROS
    corecore