131 research outputs found

    Ripples in Tapped or Blown Powder

    Full text link
    We observe ripples forming on the surface of a granular powder in a container submitted from below to a series of brief and distinct shocks. After a few taps, the pattern turns out to be stable against any further shock of the same amplitude. We find experimentally that the characteristic wavelength of the pattern is proportional to the amplitude of the shocks. Starting from consideration involving Darcy's law for air flow through the porous granulate and avalanche properties, we build up a semi-quantitative model which fits satisfactorily the set of experimental observations as well as a couple of additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9

    Evolution on a smooth landscape

    Full text link
    We study in detail a recently proposed simple discrete model for evolution on smooth landscapes. An asymptotic solution of this model for long times is constructed. We find that the dynamics of the population are governed by correlation functions that although being formally down by powers of NN (the population size) nonetheless control the evolution process after a very short transient. The long-time behavior can be found analytically since only one of these higher-order correlators (the two-point function) is relevant. We compare and contrast the exact findings derived herein with a previously proposed phenomenological treatment employing mean field theory supplemented with a cutoff at small population density. Finally, we relate our results to the recently studied case of mutation on a totally flat landscape.Comment: Revtex, 15 pages, + 4 embedded PS figure

    Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices

    Get PDF
    We report the electromagnetic properties of a waveguide loaded by complementary electric split ring resonators (CeSRRs) and the application of the waveguide in vacuum electronics. The S-parameters of the CeSRRs in free space are calculated using the HFSS code and are used to retrieve the effective permittivity and permeability in an effective medium theory. The dispersion relation of a waveguide loaded with the CeSRRs is calculated by two approaches: by direct calculation with HFSS and by calculation with the effective medium theory; the results are in good agreement. An improved agreement is obtained using a fitting procedure for the permittivity tensor in the effective medium theory. The gain of a backward wave mode of the CeSRR-loaded waveguide interacting with an electron beam is calculated by two methods: by using the HFSS model and traveling wave tube theory; and by using a dispersion relation derived in the effective medium model. Results of the two methods are in very good agreement. The proposed all-metal structure may be useful in miniaturized vacuum electron devices.United States. Department of Energy (Grant DE-SC0010075

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe

    Dynamics of grain ejection by sphere impact on a granular bed

    Get PDF
    The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favourably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains is evaluated and allows for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.Comment: 9 page

    Analysis and optimization of a free-electron laser with an irregular waveguide

    Full text link
    Using a time-dependent approach the analysis and optimization of a planar FEL-amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of nonlinear dynamics three-dimensional equations of motion and the excitation equation are partly integrated in an analytical way. As a result, a self-consistent reduced model of the FEL is built in special phase space. The reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide. The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles. The numerical simulation of the original non-simplified model is performed to check the effectiveness of found optimal profiles. The FEL parameters are chosen to be close to the parameters of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p. 750), in which a sheet electron beam with the moderate thickness interacts with the TE01 mode of a rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of five or six if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized profile is used

    Projectile interactions in granular impact cratering

    Get PDF
    We present evidence for the interactions between a ball and the container boundaries, as well as between two balls, that are mediated by the granular medium during impact cratering. The presence of the bottom boundary affects the final penetration depth only for low drop heights with shallow filling, in which case, surprisingly, the penetration becomes deeper. By contrast the presence of the side wall causes less penetration and also an effective repulsion. Repulsion is also found for two balls dropped side-by-side

    Active Negative Index Metamaterial Powered by an Electron Beam

    Get PDF
    A novel active negative index metamaterial that derives its gain from an electron beam is intro- duced. The metamaterial consists of a stack of equidistant parallel metal plates perforated by a periodic array of holes shaped as complementary split-ring resonators. It is shown that this structure supports a negative-index transverse magnetic electromagnetic mode that can resonantly interact with a relativistic electron beam. Such metamaterial can be used as a coherent radiation source or a particle accelerator.Comment: 5 pages, 4 figure

    Mutator Dynamics on a Smooth Evolutionary Landscape

    Full text link
    We investigate a model of evolutionary dynamics on a smooth landscape which features a ``mutator'' allele whose effect is to increase the mutation rate. We show that the expected proportion of mutators far from equilibrium, when the fitness is steadily increasing in time, is governed solely by the transition rates into and out of the mutator state. This results is a much faster rate of fitness increase than would be the case without the mutator allele. Near the fitness equilibrium, however, the mutators are severely suppressed, due to the detrimental effects of a large mutation rate near the fitness maximum. We discuss the results of a recent experiment on natural selection of E. coli in the light of our model.Comment: 4 pages, 3 figure
    corecore