10,089 research outputs found
Quantum Films Adsorbed on Graphite: Third and Fourth Helium Layers
Using a path-integral Monte Carlo method for simulating superfluid quantum
films, we investigate helium layers adsorbed on a substrate consisting of
graphite plus two solid helium layers. Our results for the promotion densities
and the dependence of the superfluid density on coverage are in agreement with
experiment. We can also explain certain features of the measured heat capacity
as a function of temperature and coverage.Comment: 13 pages in the Phys. Rev. two-column format, 16 Figure
Anisakis infection in allis shad, Alosa alosa (Linnaeus, 1758), and twaite shad, Alosa fallax (Lacépède, 1803), from Western Iberian Peninsula Rivers : zoonotic and ecological implications
Acknowledgments The authors would like to thank M. N. Cueto and J.M. Antonio (ECOBIOMAR) for their excellent technical support and also Rodrigo López for making the map of the study area. We also thank the personal of the Vigo IEO, for providing information about shad captures at sea collected on the basis of national program (AMDES) included in the European Data Collection Framework (DCF) project. We are also grateful to Comandancia Naval de Tui for providing fishing data. M. Bao is supported by a PhD grant from the University of Aberdeen and also by financial support of the contract from the EU Project PARASITE (grant number 312068). This study was partially supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/44892/2008) and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through Foundation for Science and Technology (FCT), under the project BPEst-C/MAR/ LA0015/2013. The authors thank the staff of the Station of Hydrobiology of the USC BEncoro do Con^ due their participation in the surveys. This work has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia and the project MIGRANET of the Interreg IV BSUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). D.J. Nachón is supported by a PhD grant from the Xunta de Galicia (PRE/2011/198)Peer reviewedPostprin
A (1,2) Heterotic String with Gauge Symmetry
We construct a (1,2) heterotic string with gauge symmetry and determine its
particle spectrum. This theory has a local N=1 worldsheet supersymmetry for
left movers and a local N=2 worldsheet supersymmetry for right movers and
describes particles in either two or three space-time dimensions. We show that
fermionizing the bosons of the compactified N=1 space leads to a particle
spectrum which has nonabelian gauge symmetry. The fermionic formulation of the
theory corresponds to a dimensional reduction of self dual Yang Mills. We also
give a worldsheet action for the theory and calculate the one-loop path
integral.Comment: 17 pages, added reference
On the validity of mean-field amplitude equations for counterpropagating wavetrains
We rigorously establish the validity of the equations describing the
evolution of one-dimensional long wavelength modulations of counterpropagating
wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We
consider both periodic amplitude functions and localized wavepackets. For the
localized case, the wavetrains are completely decoupled at leading order, while
in the periodic case the amplitude equations take the form of mean-field
(nonlocal) Schr\"odinger equations rather than locally coupled partial
differential equations. The origin of this weakened coupling is traced to a
hidden translation symmetry in the linear problem, which is related to the
existence of a characteristic frame traveling at the group velocity of each
wavetrain. It is proved that solutions to the amplitude equations dominate the
dynamics of the governing equations on asymptotically long time scales. While
the details of the discussion are restricted to the class of model equations
having a leading cubic nonlinearity, the results strongly indicate that
mean-field evolution equations are generic for bimodal disturbances in
dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil
Is There a Peccei-Quinn Phase Transition?
The nature of axion cosmology is usually said to depend on whether the
Peccei-Quinn (PQ) symmetry breaks before or after inflation. The PQ symmetry
itself is believed to be an accident, so there is not necessarily a symmetry
during inflation at all. We explore these issues in some simple models, which
provide examples of symmetry breaking before and after inflation, or in which
there is no symmetry during inflation and no phase transition at all. One
effect of these observations is to relax the constraints from isocurvature
fluctuations due to the axion during inflation. We also observe new
possibilities for evading the constraints due to cosmic strings and domain
walls, but they seem less generic.Comment: 14 pages. Several references adde
Multi-transmission-line-beam interactive system
We construct here a Lagrangian field formulation for a system consisting of
an electron beam interacting with a slow-wave structure modeled by a possibly
non-uniform multiple transmission line (MTL). In the case of a single line we
recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce.
Since a properly chosen MTL can approximate a real waveguide structure with any
desired accuracy, the proposed model can be used in particular for design
optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear
identification of the mathematical source of amplification, (ii) exact
expressions for the conserved energy and its flux distributions obtained from
the Noether theorem. In the case of uniform MTLs we carry out an exhaustive
analysis of eigenmodes and find sharp conditions on the parameters of the
system to provide for amplifying regimes
Disorder-induced magnetic memory: Experiments and theories
Beautiful theories of magnetic hysteresis based on random microscopic
disorder have been developed over the past ten years. Our goal was to directly
compare these theories with precise experiments. We first developed and then
applied coherent x-ray speckle metrology to a series of thin multilayer
perpendicular magnetic materials. To directly observe the effects of disorder,
we deliberately introduced increasing degrees of disorder into our films. We
used coherent x-rays to generate highly speckled magnetic scattering patterns.
The apparently random arrangement of the speckles is due to the exact
configuration of the magnetic domains in the sample. In effect, each speckle
pattern acts as a unique fingerprint for the magnetic domain configuration.
Small changes in the domain structure change the speckles, and comparison of
the different speckle patterns provides a quantitative determination of how
much the domain structure has changed. How is the magnetic domain configuration
at one point on the major hysteresis loop related to the configurations at the
same point on the loop during subsequent cycles? The microscopic return-point
memory(RPM) is partial and imperfect in the disordered samples, and completely
absent when the disorder was not present. We found the complementary-point
memory(CPM) is also partial and imperfect in the disordered samples and
completely absent when the disorder was not present. We found that the RPM is
always a little larger than the CPM. We also studied the correlations between
the domains within a single ascending or descending loop. We developed new
theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0
- …