10,089 research outputs found

    Quantum Films Adsorbed on Graphite: Third and Fourth Helium Layers

    Full text link
    Using a path-integral Monte Carlo method for simulating superfluid quantum films, we investigate helium layers adsorbed on a substrate consisting of graphite plus two solid helium layers. Our results for the promotion densities and the dependence of the superfluid density on coverage are in agreement with experiment. We can also explain certain features of the measured heat capacity as a function of temperature and coverage.Comment: 13 pages in the Phys. Rev. two-column format, 16 Figure

    Anisakis infection in allis shad, Alosa alosa (Linnaeus, 1758), and twaite shad, Alosa fallax (Lacépède, 1803), from Western Iberian Peninsula Rivers : zoonotic and ecological implications

    Get PDF
    Acknowledgments The authors would like to thank M. N. Cueto and J.M. Antonio (ECOBIOMAR) for their excellent technical support and also Rodrigo López for making the map of the study area. We also thank the personal of the Vigo IEO, for providing information about shad captures at sea collected on the basis of national program (AMDES) included in the European Data Collection Framework (DCF) project. We are also grateful to Comandancia Naval de Tui for providing fishing data. M. Bao is supported by a PhD grant from the University of Aberdeen and also by financial support of the contract from the EU Project PARASITE (grant number 312068). This study was partially supported by a PhD grant from the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/44892/2008) and partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through Foundation for Science and Technology (FCT), under the project BPEst-C/MAR/ LA0015/2013. The authors thank the staff of the Station of Hydrobiology of the USC BEncoro do Con^ due their participation in the surveys. This work has been partially supported by the project 10PXIB2111059PR of the Xunta de Galicia and the project MIGRANET of the Interreg IV BSUDOE (South-West Europe) Territorial Cooperation Programme (SOE2/P2/E288). D.J. Nachón is supported by a PhD grant from the Xunta de Galicia (PRE/2011/198)Peer reviewedPostprin

    A (1,2) Heterotic String with Gauge Symmetry

    Get PDF
    We construct a (1,2) heterotic string with gauge symmetry and determine its particle spectrum. This theory has a local N=1 worldsheet supersymmetry for left movers and a local N=2 worldsheet supersymmetry for right movers and describes particles in either two or three space-time dimensions. We show that fermionizing the bosons of the compactified N=1 space leads to a particle spectrum which has nonabelian gauge symmetry. The fermionic formulation of the theory corresponds to a dimensional reduction of self dual Yang Mills. We also give a worldsheet action for the theory and calculate the one-loop path integral.Comment: 17 pages, added reference

    On the validity of mean-field amplitude equations for counterpropagating wavetrains

    Full text link
    We rigorously establish the validity of the equations describing the evolution of one-dimensional long wavelength modulations of counterpropagating wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We consider both periodic amplitude functions and localized wavepackets. For the localized case, the wavetrains are completely decoupled at leading order, while in the periodic case the amplitude equations take the form of mean-field (nonlocal) Schr\"odinger equations rather than locally coupled partial differential equations. The origin of this weakened coupling is traced to a hidden translation symmetry in the linear problem, which is related to the existence of a characteristic frame traveling at the group velocity of each wavetrain. It is proved that solutions to the amplitude equations dominate the dynamics of the governing equations on asymptotically long time scales. While the details of the discussion are restricted to the class of model equations having a leading cubic nonlinearity, the results strongly indicate that mean-field evolution equations are generic for bimodal disturbances in dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil

    Is There a Peccei-Quinn Phase Transition?

    Full text link
    The nature of axion cosmology is usually said to depend on whether the Peccei-Quinn (PQ) symmetry breaks before or after inflation. The PQ symmetry itself is believed to be an accident, so there is not necessarily a symmetry during inflation at all. We explore these issues in some simple models, which provide examples of symmetry breaking before and after inflation, or in which there is no symmetry during inflation and no phase transition at all. One effect of these observations is to relax the constraints from isocurvature fluctuations due to the axion during inflation. We also observe new possibilities for evading the constraints due to cosmic strings and domain walls, but they seem less generic.Comment: 14 pages. Several references adde

    Multi-transmission-line-beam interactive system

    Full text link
    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes

    Disorder-induced magnetic memory: Experiments and theories

    Full text link
    Beautiful theories of magnetic hysteresis based on random microscopic disorder have been developed over the past ten years. Our goal was to directly compare these theories with precise experiments. We first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, we deliberately introduced increasing degrees of disorder into our films. We used coherent x-rays to generate highly speckled magnetic scattering patterns. The apparently random arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? The microscopic return-point memory(RPM) is partial and imperfect in the disordered samples, and completely absent when the disorder was not present. We found the complementary-point memory(CPM) is also partial and imperfect in the disordered samples and completely absent when the disorder was not present. We found that the RPM is always a little larger than the CPM. We also studied the correlations between the domains within a single ascending or descending loop. We developed new theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0

    56: Quantifying the survival benefit of allogeneic stem cell transplant in the management of relapsed acute myeloid leukemia

    Get PDF
    corecore