36 research outputs found

    Vascular tube formation on matrix metalloproteinase-1-damaged collagen

    Get PDF
    Connective tissue damage and angiogenesis are both important features of tumour growth and invasion. Here, we show that endothelial cells maintained on a three-dimensional lattice of intact polymerised collagen formed a monolayer of cells with a cobblestone morphology. When the collagen was exposed to organ culture fluid from human basal cell tumours of the skin (containing a high level of active matrix metalloproteinase-1 (MMP-1)), degradation of the collagen matrix occurred. The major degradation products were the 3over43over 4- and 1over41over 4-sized fragments known to result from the action of MMP-1 on type I collagen. When endothelial cells were maintained on the partially degraded collagen, the cells organised into a network of vascular tubes. Pretreatment of the organ culture fluid with either tissue inhibitor of metalloproteinase-1 (TIMP-1) or neutralising antibody to MMP-1 prevented degradation of the collagen lattice and concomitantly inhibited endothelial cell organisation into the vascular network. Purified (activated) MMP-1 duplicated the effects of skin organ culture fluid, but other enzymes including MMP-9 (gelatinase B), elastase or trypsin failed to produce measurable fragments from intact collagen and also failed to promote vascular tube formation. Together, these studies suggest that damage to the collagenous matrix is itself an important inducer of new vessel formation

    Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells

    Full text link
    Previous studies have shown that thrombospondin (TSP) is an adhesion factor for some human tumor cells. The previous studies have shown further that tumor cells which utilize TSP as an adhesion factor also synthesize it. This study continues the effort to understand how TSP production and expression are regulated in human tumor cells and the consequences of this for the cells. It is shown that differences among cell lines in their capacity to biosynthesize TSP are associated with differences in TSP specific mRNA levels. This indicates that biosynthesis is regulated at the transcriptional level. There is also a direct relationship between TSP biosynthesis and secretion into the culture medium and expression at the cell surface. The cells which are the most biosynthetically active secrete amounts of TSP into the culture medium that are sufficient to elicit a detectable response in the cell-substrate adhesion assay. The kinetics of TSP secretion by these cells are in accord with the kinetics of attachment and spreading of the same cells in the absence of exogenous adhesion factors. These data are consistent with the idea that endogenously produced TSP promotes the adhesion of the cells which synthesize it in an autocrine manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42595/1/10585_2005_Article_BF01753679.pd

    Interaction of mammalian cells with polymorphonuclear leukocytes: Relative sensitivity to monolayer disruption and killing

    Full text link
    Monolayers of murine fibrosarcoma cells that had been treated either with histone-opsonized streptococci, histone-opsonized Candida globerata , or lipoteichoic acid-anti-lipoteichoic acid complexes underwent disruption when incubated with human polymorphonuclear leukocytes (PMNs). Although the architecture of the monolayers was destroyed, the target cells were not killed. The destruction of the monolayers was totally inhibited by proteinase inhibitors, suggesting that the detachment of the cells from the monolayers and aggregation in suspension were induced by proteinases released from the activated PMNs. Monolayers of normal endothelial cells and fibroblasts were much more resistant to the monolayer-disrupting effects of the PMNs than were the fibrosarcoma cells. Although the fibrosarcoma cells were resistant to killing by PMNs, killing was promoted by the addition of sodium azide (a catalase inhibitor). This suggests that the failure of the PMNs to kill the target cells was due to catalase inhibition of the hydrogen peroxide produced by the activated PMNs. Target cell killing that occurred in the presence of sodium azide was reduced by the addition of a “cocktail” containing methionine, histidine, and deferoxamine mesylate, suggesting that hydroxyl radicals but not myeloperoxidase-catalayzed products were responsible for cell killing. The relative ease with which the murine fibrosarcoma cells can be released from their substratum by the action of PMNs, coupled with their insensitivity to PMN-mediated killing, may explain why the presence of large numbers of PMNs at the site of tumors produced in experimental animals by the fibrosarcoma cells is associated with an unfavorable outcome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44503/1/10753_2004_Article_BF00916759.pd
    corecore