28,508 research outputs found

    Phase Space Evolution and Discontinuous Schr\"odinger Waves

    Full text link
    The problem of Schr\"odinger propagation of a discontinuous wavefunction -diffraction in time- is studied under a new light. It is shown that the evolution map in phase space induces a set of affine transformations on discontinuous wavepackets, generating expansions similar to those of wavelet analysis. Such transformations are identified as the cause for the infinitesimal details in diffraction patterns. A simple case of an evolution map, such as SL(2) in a two-dimensional phase space, is shown to produce an infinite set of space-time trajectories of constant probability. The trajectories emerge from a breaking point of the initial wave.Comment: Presented at the conference QTS7, Prague 2011. 12 pages, 7 figure

    Identifying studies for systematic reviews - An example from medical imaging

    Get PDF
    Objectives: To determine if published figures on the proportion of articles included in systematic reviews and identified in electronic databases are applicable to an example from medical imaging. Methods: A systematic review was performed. Additionally, sensitivity and precision of a MEDLINE search were compared with values from three published searches, each customized for a specific field. Results: All articles included in the systematic review were in electronic databases. The MEDLINE search had low precision compared with searches in other fields. Conclusions: in a specific area of medical imaging, electronic databases, including MEDLINE, are reliable sources of articles

    Point perturbations of circle billiards

    Full text link
    The spectral statistics of the circular billiard with a point-scatterer is investigated. In the semiclassical limit, the spectrum is demonstrated to be composed of two uncorrelated level sequences. The first corresponds to states for which the scatterer is located in the classically forbidden region and its energy levels are not affected by the scatterer in the semiclassical limit while the second sequence contains the levels which are affected by the point-scatterer. The nearest neighbor spacing distribution which results from the superposition of these sequences is calculated analytically within some approximation and good agreement with the distribution that was computed numerically is found.Comment: 9 pages, 2 figure

    Theory of 2ÎŽ\delta-kicked Quantum Rotors

    Get PDF
    We examine the quantum dynamics of cold atoms subjected to {\em pairs} of closely spaced ÎŽ\delta-kicks from standing waves of light, and find behaviour quite unlike the well-studied quantum kicked rotor (QKR). Recent experiments [Jones et al, {\em Phys. Rev. Lett. {\bf 93}, 223002 (2004)}] identified a regime of chaotic, anomalous classical diffusion. We show that the corresponding quantum phase-space has a cellular structure, arising from a unitary matrix with oscillating band-width. The corresponding eigenstates are exponentially localized, but scale with a fractional power, L∌ℏ−0.75L \sim \hbar^{-0.75}, in contrast to the QKR for which L∌ℏ−1L \sim \hbar^{-1}. The effect of inter-cell (and intra-cell) transport is investigated by studying the spectral fluctuations with both periodic as well as `open' boundary conditions.Comment: 12 pages with 14 figure

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    Deformations and dilations of chaotic billiards, dissipation rate, and quasi-orthogonality of the boundary wavefunctions

    Full text link
    We consider chaotic billiards in d dimensions, and study the matrix elements M_{nm} corresponding to general deformations of the boundary. We analyze the dependence of |M_{nm}|^2 on \omega = (E_n-E_m)/\hbar using semiclassical considerations. This relates to an estimate of the energy dissipation rate when the deformation is periodic at frequency \omega. We show that for dilations and translations of the boundary, |M_{nm}|^2 vanishes like \omega^4 as \omega -> 0, for rotations like \omega^2, whereas for generic deformations it goes to a constant. Such special cases lead to quasi-orthogonality of the eigenstates on the boundary.Comment: 4 pages, 3 figure
    • 

    corecore