9,619 research outputs found
Stimulated Raman backscattering of laser radiation in deep plasma channels
Stimulated Raman backscattering (RBS) of intense laser radiation confined by
a single-mode plasma channel with a radial variation of plasma frequency
greater than a homogeneous-plasma RBS bandwidth is characterized by a strong
transverse localization of resonantly-driven electron plasma waves (EPW). The
EPW localization reduces the peak growth rate of RBS and increases the
amplification bandwidth. The continuum of non-bound modes of backscattered
radiation shrinks the transverse field profile in a channel and increases the
RBS growth rate. Solution of the initial-value problem shows that an
electromagnetic pulse amplified by the RBS in the single-mode deep plasma
channel has a group velocity higher than in the case of homogeneous-plasma
Raman amplification. Implications to the design of an RBS pulse compressor in a
plasma channel are discussed.Comment: 11 pages, 3 figures; submitted to Physics of Plasma
Cold Quark Matter, Quadratic Corrections and Gauge/String Duality
We make an estimate of the quadratic correction in the pressure of cold quark
matter using gauge/string duality.Comment: 7 pages; v.2: reference added; v.3: reference and comments added,
version to appear in PRD; v4. final version to appear in PRD; v.5: key
reference adde
Generating Functional for Gauge Invariant Actions: Examples of Nonrelativistic Gauge Theories
We propose a generating functional for nonrelativistic gauge invariant
actions. In particular, we consider actions without the usual magnetic term.
Like in the Born-Infeld theory, there is an upper bound to the electric field
strength in these gauge theories.Comment: 14 pages, 2 figures; v2: misprints correcte
Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement
Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled
successfully using a zero-range delta-function potential, while that of bosonic
3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave
pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D
fermions under external harmonic confinement interacting through a zero-range
potential, which only acts on odd-parity wave functions, analytically. We also
present a divergent-free zero-range potential treatment of two spin-polarized
3D fermions under harmonic confinement. Our pseudo-potential treatments are
verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004
Tunneling into d-wave superconductors: Effects of interface spin-orbit coupling
Tunneling conductance of a clean normal metal/d-wave superconductor junction
is studied by using the extended Blonder-Tinkham-Klapwijk formalism. We show
that the conductance is significantly affected by the interface spin-orbit
coupling of the Rashba type, which is inevitably present due to the asymmetry
of the junction.Comment: 4 pages, 4 figure
Nonlinear evolution of the plasma beatwave: Compressing the laser beatnotes via electromagnetic cascading
The near-resonant beatwave excitation of an electron plasma wave (EPW) can be
employed for generating the trains of few-femtosecond electromagnetic (EM)
pulses in rarefied plasmas. The EPW produces a co-moving index grating that
induces a laser phase modulation at the difference frequency. The bandwidth of
the phase-modulated laser is proportional to the product of the plasma length,
laser wavelength, and amplitude of the electron density perturbation. The laser
spectrum is composed of a cascade of red and blue sidebands shifted by integer
multiples of the beat frequency. When the beat frequency is lower than the
electron plasma frequency, the red-shifted spectral components are advanced in
time with respect to the blue-shifted ones near the center of each laser
beatnote. The group velocity dispersion of plasma compresses so chirped
beatnotes to a few-laser-cycle duration thus creating a train of sharp EM
spikes with the beat periodicity. Depending on the plasma and laser parameters,
chirping and compression can be implemented either concurrently in the same, or
sequentially in different plasmas. Evolution of the laser beatwave end electron
density perturbations is described in time and one spatial dimension in a
weakly relativistic approximation. Using the compression effect, we demonstrate
that the relativistic bi-stability regime of the EPW excitation [G. Shvets,
Phys. Rev. Lett. 93, 195004 (2004)] can be achieved with the initially
sub-threshold beatwave pulse.Comment: 13 pages, 11 figures, submitted to Physical Review
Two-photon correlations as a sign of sharp transition in quark-gluon plasma
The photon production arising due to time variation of the medium has been
considered. The Hamilton formalism for photons in time-variable medium (plasma)
has been developed with application to inclusive photon production. The results
have been used for calculation of the photon production in the course of
transition from quark-gluon phase to hadronic phase in relativistic heavy ion
collisions. The relative strength of the effect as well as specific two- photon
correlations have been evaluated. It has been demonstrated that the opposite
side two-photon correlations are indicative of the sharp transition from the
quark-gluon phase to hadrons.Comment: 23 pages, 2 figure
A quantum hydrodynamics approach to the formation of new types of waves in polarized two-dimension systems of charged and neutral particles
In this paper we explicate a method of quantum hydrodynamics (QHD) for the
study of the quantum evolution of a system of polarized particles. Though we
focused primarily on the two-dimension physical systems, the method is valid
for three-dimension and one-dimension systems too. The presented method is
based upon the Schr\"{o}dinger equation. Fundamental QHD equations for charged
and neutral particles were derived from the many-particle microscopic
Schr\"{o}dinger equation. The fact that particles possess the electric dipole
moment (EDM) was taken into account. The explicated QHD approach was used to
study dispersion characteristics of various physical systems. We analyzed
dispersion of waves in a two-dimension (2D) ion and hole gas placed into an
external electric field which is orthogonal to the gas plane. Elementary
excitations in a system of neutral polarized particles were studied for 1D, 2D
and 3D cases. The polarization dynamics in systems of both neutral and charged
particles is shown to cause formation of a new type of waves as well as changes
in the dispersion characteristics of already known waves. We also analyzed wave
dispersion in 2D exciton systems, in 2D electron-ion plasma and 2D
electron-hole plasma. Generation of waves in 3D system neutral particles with
EDM by means of the beam of electrons and neutral polarized particles is
investigated.Comment: 15 pages, 7 figure
Physical Mechanism of the d->d+is Transition
We discuss the basic physical mechanism of the d->d+is transition, which is
the currently accepted explanation for the results of tunneling experiments
into planes. Using the first-order perturbation theory, we show that the
zero-bias states drive the transition. We present various order-of-magnitude
estimates and consistency checks that support this picture.Comment: 7 pages, 2 figure
- …