9 research outputs found
Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling
Recent theoretical studies of topologically nontrivial electronic states in
Kondo insulators have pointed to the importance of spin-orbit coupling (SOC)
for stabilizing these states. However, systematic experimental studies that
tune the SOC parameter in Kondo insulators remain elusive.
The main reason is that variations of (chemical) pressure or doping strongly
influence the Kondo coupling and the chemical potential --
both essential parameters determining the ground state of the material -- and
thus possible tuning effects have remained unnoticed. Here
we present the successful growth of the substitution series
CeBi(PtPd) () of the archetypal
(noncentrosymmetric) Kondo insulator CeBiPt. The Pt-Pd substitution
is isostructural, isoelectronic, and isosize, and therefore likely to leave
and essentially unchanged. By contrast, the large mass
difference between the element Pt and the element Pd leads to a large
difference in , which thus is the dominating tuning
parameter in the series. Surprisingly, with increasing (decreasing
), we observe a Kondo insulator to semimetal transition,
demonstrating an unprecedented drastic influence of the SOC. The fully
substituted end compound CeBiPd shows thermodynamic signatures of a
recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia