219 research outputs found
Recommended from our members
Analysis of fuzzy clustering and a generic fuzzy rule-based image segmentation technique
Many fuzzy clustering based techniques when applied to image segmentation do not incorporate spatial relationships of the pixels, while fuzzy rule-based image segmentation techniques are generally application dependent. Also for most of these techniques, the structure of the membership functions is predefined and parameters have to either automatically or manually derived. This paper addresses some of these issues by introducing a new generic fuzzy rule based image segmentation (GFRIS) technique, which is both application independent and can incorporate the spatial relationships of the pixels as well. A qualitative comparison is presented between the segmentation results obtained using this method and the popular fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms using an empirical discrepancy method. The results demonstrate this approach exhibits significant improvements over these popular fuzzy clustering algorithms for a wide range of differing image types
A Modified Distortion Measurement Algorithm for Shape Coding
Efficient encoding of object boundaries has become increasingly prominent in areas such as content-based storage and retrieval, studio and television post-production facilities, mobile communications and other real-time multimedia applications. The way distortion between the actual and approximated shapes is measured however, has a major impact upon the quality of the shape coding algorithms. In existing shape coding methods, the distortion measure do not generate an actual distortion value, so this paper proposes a new distortion measure, called a modified distortion measure for shape coding (DMSC) which incorporates an actual perceptual distance. The performance of the Operational Rate Distortion optimal algorithm [1] incorporating DMSC has been empirically evaluated upon a number of different natural and synthetic arbitrary shapes. Both qualitative and quantitative results confirm the superior results in comparison with the ORD lgorithm for all test shapes, without any increase in computational complexity
Recommended from our members
Very low bit-rate video coding focusing on moving regions using three-tier arbitrary-shaped pattern selection algorithm
Very low bit-rate video coding using patterns to represent moving regions in macroblocks exhibits good potential for improved coding efficiency. Recently an Arbitrary Shaped Pattern Selection (ASPS) algorithm and its Extended version(EASPS) were presented, that used a dynamically extracted set of patterns, of the two different sizes, based on actual video content. These algorithms, like other pattern matching algorithms failed to capture a large number of active-region macroblocks (RMB) especially when the object moving regions is relatively larger in a video sequence. As the size of the moving object may vary, superior coding performance is achievable by using dynamically extracted patterns of a larger size. This paper, proposes a three-tier Arbitrary Shaped Pattern Selection (ASPS-3) algorithm that uses three different pattern sizes for very low bit ate coding. Experimental results show that ASPS-3 exhibits better performance compared with other pattern matching algorithms, including the low-bit rate video coding standard H.263
Recommended from our members
A content-aware quantisation mechanism for transform domain distributed video coding
The discrete cosine transform (DCT) is widely applied in modern codecs to remove spatial redundancies, with the resulting DCT coefficients being quantised to achieve compression as well as bit-rate control. In distributed video coding (DVC) architectures like DISCOVER, DCT coefficient quantisation is traditionally performed using predetermined quantisation matrices (QM), which means the compression is heavily dependent on the sequence being coded. This makes bit-rate control challenging, with the situation exacerbated in the coding of high resolution sequences due to QM scarcity and the non-uniform bit-rate gaps between them. This paper introduces a novel content-aware quantisation (CAQ) mechanism to overcome the limitations of existing quantisation methods in transform domain DVC. CAQ creates a frame-specific QM to reduce quantisation errors by analysing the distribution of DCT coefficients. In contrast to the predetermined QM that is applicable to only 4x4 block sizes, CAQ produces QM for larger block sizes to enhance compression at higher resolutions. This provides superior bit-rate control and better output quality by seeking to fully exploit the available bandwidth, which is especially beneficial in bandwidth constrained scenarios. In addition, CAQ generates superior perceptual results by innovatively applying different weightings to the DCT coefficients to reflect the human visual system. Experimental results corroborate that CAQ both quantitatively and qualitatively provides enhanced output quality in bandwidth limited scenarios, by consistently utilising over 90% of available bandwidth
Recommended from our members
A novel filter for block-based motion estimation
Noises, in the form of false motion vectors, cannot be avoided while capturing block motion vectors using block based motion estimation techniques. Similar noises are further introduced when the technique of global motion compensation is applied to obtain 'true' object motion from video sequences, where both the camera and object motions are present. We observe that the performance of the mean and the median filters in removing false motion vectors, for estimating 'true' object motion, is not satisfactory, especially when the size of the object is significantly smaller than the scene. In this paper we introduce a novel filter, named as the Mean-Accumulated-Thresholded (MAT) filter, in order to capture 'true' object motion vectors from video sequences with or without the camera motion (zoom and/or pan). Experimental results on representative standard video sequences are included to establish the superiority of our filter compared with the traditional median and mean filters
Image-Dependent Spatial Shape-Error Concealment
Existing spatial shape-error concealment techniques are broadly based upon either parametric curves that exploit geometric information concerning a shape's contour or object shape statistics using a combination of Markov random fields and maximum a posteriori estimation. Both categories are to some extent, able to mask errors caused by information loss, provided the shape is considered independently of the image/video. They palpably however, do not afford the best solution in applications where shape is used as metadata to describe image and video content. This paper presents a novel image-dependent spatial shape-error concealment (ISEC) algorithm that uses both image and shape information by employing the established rubber-band contour detecting function, with the novel enhancement of automatically determining the optimal width of the band to achieve superior error concealment. Experimental results corroborate both qualitatively and numerically, the enhanced performance of the new ISEC strategy compared with established techniques
Recommended from our members
An Adaptive Soft Handover Scheme Using Fuzzy Load Balancing for WCDMA Systems
In cellular systems, user distribution variations can cause load imbalance between cells. Embedding a load balancing strategy within the handover scheme means that ensuing traffic congestion can be alleviated by dynamically reallocating load between neighbouring cells. An adaptive soft handover scheme for multimedia cellular communication systems is proposed in this paper, that considers both the cell load factors as well as the pilot channel signal-to-interference-and-noise-ratio (SINR) for soft handovers. By using fuzzy principles, the soft handover thresholds and time hysteresis are adapted dependent upon the loads of the neighbouring cells. Simulation results show that the new algorithm provides improved system performance in terms of a more evenly distributed load, lower blocking probabilities and higher throughput
TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation
The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within.
This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy
Recommended from our members
Automatic analysis of magnetic resonance (MR) sequences for the diagnosis of ligament lesions
To date the diagnosis of carpal instabilities due to ligament lesions relies upon a qualitative examination of the patient's wrist. This paper presents a novel system where sequences of magnetic resonance images (MRI) are automatically analysed to measure the motion of several wrist bones. Resulting motion graphs provide a quantitative basis for diagnostic as well as scientific purposes. As the imaging method is non-invasive up to twelve different wrist positions can be measured giving a detailed insight into the motion of the bone
- …