1,640 research outputs found

    Novel Phase Between Band and Mott Insulators in Two Dimensions

    Full text link
    We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Δ\Delta, the so-called ionic Hubbard model, using cluster dynamical mean field theory. We find that for large Coulomb repulsion, U≫ΔU\gg \Delta, the system is a Mott insulator (MI). For weak to intermediate values of Δ\Delta, on decreasing UU, the Mott gap closes at a critical value Uc1(Δ)U_{c1}(\Delta) beyond which a correlated insulating phase with possible bond order (BO) is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Δ)U_{c2}(\Delta) with a finite charge gap at the transition. For large Δ\Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary

    Dynamical Mean-Field Study of the Ferromagnetic Transition Temperature of a Two-Band Model for Colossal Magnetoresistance Materials

    Full text link
    The ferromagnetic (FM) transition temperature (Tc) of a two-band Double-Exchange (DE) model for colossal magnetoresistance (CMR) materials is studied using dynamical mean-field theory (DMFT), in wide ranges of coupling constants, hopping parameters, and carrier densities. The results are shown to be in excellent agreement with Monte Carlo simulations. When the bands overlap, the value of Tc is found to be much larger than in the one-band case, for all values of the chemical potential within the energy overlap interval. A nonzero interband hopping produces an additional substantial increase of Tc, showing the importance of these nondiagonal terms, and the concomitant use of multiband models, to boost up the critical temperatures in DE-based theories.Comment: 4 pages, 4 eps figure

    Study of ARPES data and d-wave superconductivity using electronic models in two dimensions

    Full text link
    We review the results of an extensive investigation of photoemission spectral weight using electronic models for the high-Tc superconductors. Here we show that some recently reported unusual features of the cuprates namely the presence of (i) flat bands, (ii) small quasiparticle bandwidths, and (iii) antiferromagnetically induced weight, have all a natural explanation within the context of holes moving in the presence of robust antiferromagnetic correlations. Introducing interactions among the hole carriers, a model is constructed which has dx2−y2{\rm d_{x^2 - y^2}} superconductivity, an optimal doping of ∼15%\sim 15\% (caused by the presence of a large density of states at the top of the valence band), and a critical temperature ∼100K\sim 100K.Comment: 11 pages Z-compressed postscript, to appear in the Proceedings to the Stanford Conference on Spectroscopies in Novel superconductor

    Photoemission Spectra in t-J Ladders with Two Legs

    Full text link
    Photoemission spectra for the isotropic two-leg t-J ladder are calculated at various hole-doping levels using exact diagonalization techniques. Low-energy sharp features caused by short-range antiferromagnetic correlations are observed at finite doping levels close to half-filling, above the naive Fermi momentum. These features should be observable in angle-resolved photoemission experiments. In addition, the formation of a d-wave pairing condensate as the ratio J/t is increased leads to dynamically generated spectral weight for momenta close to kFk_F where the dx2−y2d_{x^2-y^2 }-order parameter is large.Comment: 9 pages, RevTex, to be published in Phys. Rev. B (RC

    Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3

    Full text link
    The influence of non-magnetic impurities on the spectrum and dynamical spin structure factor of a model for CuGeO3_3 is studied. A simple extension to Zn-doped SrCu2O3{\rm Sr Cu_2 O_3} is also discussed. Using Exact Diagonalization techniques and intuitive arguments we show that Zn-doping introduces states in the Spin-Peierls gap of CuGeO3_3. This effect can beunderstood easily in the large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins, which interact with each other through very weak effective antiferromagnetic couplings. When the dimerization is small, a similar effect is observed but now with the free S=1/2 spins being the resulting S=1/2 ground state of severed chains with an odd number of sites. Experimental consequences of these results are discussed. It is interesting to observe that the spin correlations along the chains are enhanced by Zn-doping according to the numerical data presented here. As recent numerical calculations have shown, similar arguments apply to ladders with non-magnetic impurities simply replacing the tendency to dimerization in CuGeO3_3 by the tendency to form spin-singlets along the rungs in SrCu2_2O3_3.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a section with experimental predictions, submmited to Phys. Rev. B in May 199

    Charge transfer in heterostructures of strongly correlated materials

    Full text link
    In this manuscript, recent theoretical investigations by the authors in the area of oxide multilayers are briefly reviewed. The calculations were carried out using model Hamiltonians and a variety of non-perturbative techniques. Moreover, new results are also included here. They correspond to the generation of a metallic state by mixing insulators in a multilayer geometry, using the Hubbard and Double Exchange models. For the latter, the resulting metallic state is also ferromagnetic. This illustrates how electron or hole doping via transfer of charge in multilayers can lead to the study of phase diagrams of transition metal oxides in the clean limit. Currently, these phase diagrams are much affected by the disordering standard chemical doping procedure, which introduces quenched disorder in the material.Comment: 14 pages, 9 figures. Invited article for a special issue of JPCM on Metal Oxide Thin Films; minor changes in the tex

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1−x_{1-x}Cax_xMnO3_3 with 0.3≤x≤0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    Electron Doping of Cuprates via Interfaces with Manganites

    Full text link
    The electron doping of undoped high-TcT_c cuprates via the transfer of charge from manganites (or other oxides) using heterostructure geometries is here theoretically discussed. This possibility is mainly addressed via a detailed analysis of photoemission and diffusion voltage experiments, which locate the Fermi level of manganites above the bottom of the upper Hubbard band of some cuprate parent compounds. A diagram with the relative location of Fermi levels and gaps for several oxides is presented. The procedure discussed here is generic, allowing for the qualitative prediction of the charge flow direction at several oxide interfaces. The addition of electrons to antiferromagnetic Cu oxides may lead to a superconducting state at the interface with minimal quenched disorder. Model calculations using static and dynamical mean-field theory, supplemented by a Poisson equation formalism to address charge redistribution at the interface, support this view. The magnetic state of the manganites could be antiferromagnetic or ferromagnetic. The former is better to induce superconductivity than the latter, since the spin-polarized charge transfer will be detrimental to singlet superconductivity. It is concluded that in spite of the robust Hubbard gaps, the electron doping of undoped cuprates at interfaces appears possible, and its realization may open an exciting area of research in oxide heterostructures.Comment: 12 pages, 9 figure

    Co-operative density wave and giant spin gap in the quarter-filled zigzag ladder

    Full text link
    Strong co-operative interactions occur between four different broken symmetries involving charge-ordering and bond distortions in the quarter-filled correlated zigzag electron ladder. The ground state is singlet, with spin gap several times larger than in the spin-Peierls state of the one-dimensional quarter-filled chain with the same parameters. We propose the quarter-filled zigzag electron ladder model for several different organic charge-transfer solids with coupled pairs of quasi-one-dimensional stacks, the spin-gap transition temperatures in which are unusually high.Comment: 4 pages, 4 EPS figures. accepted in Physical Review Letter
    • …
    corecore