10,904 research outputs found
De-risking the energy transition by quantifying the uncertainties in fault stability
The operations needed to decarbonise our energy systems increasingly involve faulted rocks in the subsurface. To manage the technical challenges presented by these rocks and the justifiable public concern over induced seismicity, we need to assess the risks. Widely used measures for fault stability, including slip and dilation tendency and fracture susceptibility, can be combined with Response Surface Methodology from engineering and Monte Carlo simulations to produce statistically viable ensembles for the analysis of probability. In this paper, we describe the implementation of this approach using custom-built open source Python code (pfs – probability of fault slip). The technique is then illustrated using two synthetic datasets and two case studies drawn from active or potential sites for geothermal energy in the UK, and discussed in the light of induced seismicity focal mechanisms. The analysis of probability highlights key gaps in our knowledge of the stress field, fluid pressures and rock properties. Scope exists to develop, integrate and exploit citizen science projects to generate more and better data, and simultaneously include the public in the necessary discussions about hazard and risk
AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids
Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their applicability in autonomous high-throughput workflows. Here, the three-phonon quasiharmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches—three-phonon, standard, and self-consistent QHAs—are all included within the open-source ab initio framework aflow, allowing the automated determination of properties with various implementations within the same framework
Mortality associated with avian reovirus infection in a free-living magpie (Pica pica) in Great Britain
Avian reoviruses (ARVs) cause a range of disease presentations in domestic, captive and free-living bird species. ARVs have been reported as a cause of significant disease and mortality in free-living corvid species in North America and continental Europe. Until this report, there have been no confirmed cases of ARV-associated disease in British wild birds
Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair.
There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer stable isotope technique at two different time points when possible. The first study was conducted when the subject was receiving maximal tolerated feeds enterally while the ostomy remained in place. A second study was performed as soon as feasible after full feeds were achieved after intestinal repair. We found biochemical evidence of deficiencies of both zinc and copper in infants with small intestinal ostomies at both time points. Fractional zinc absorption with an ostomy in place was 10.9% ± 5.3%. After reanastamosis, fractional zinc absorption was 9.4% ± 5.7%. Net zinc balance was negative prior to reanastamosis. In conclusion, our data demonstrate that infants with a jejunostomy or ileostomy are at high risk for zinc and copper deficiency before and after intestinal reanastamosis. Additional supplementation, especially of zinc, should be considered during this time period
Diffusion and Transport Coefficients in Synthetic Opals
Opals are structures composed of the closed packing of spheres in the size
range of nano-to-micro meter. They are sintered to create small necks at the
points of contact. We have solved the diffusion problem in such structures. The
relation between the diffusion coefficient and the termal and electrical
conductivity makes possible to estimate the transport coefficients of opal
structures. We estimate this changes as function of the neck size and the
mean-free path of the carriers. The theory presented is also applicable to the
diffusion problem in other periodic structures.Comment: Submitted to PR
Photoproduction of the meson on the proton at large momentum transfer
The differential cross section, for meson exclusive
photoproduction on the proton above the resonance region ( GeV) was
measured up to a momentum transfer GeV using the CLAS detector at
Jefferson Laboratory. The channel was identified by detecting a proton
and in the final state and using the missing mass technique. While the
low momentum transfer region shows the typical diffractive pattern expected
from Pomeron and Reggeon exchange, at large the differential cross section
has a flat behavior. This feature can be explained by introducing quark
interchange processes in addition to the QCD-inspired two-gluon exchange.Comment: 5 pages, 5 figure
The role of science in physical natural hazard assessment : report to the UK Government by the Natural Hazard Working Group
Following the tragic Asian tsunami on 26 December 2004, the Prime Minister asked
the Government’s Chief Scientific Adviser, Sir David King, to convene a group of
experts (the Natural Hazard Working Group) to advise on the mechanisms that could
and should be established for the detection and early warning of global physical
natural hazards.
2. The Group was asked to examine physical hazards which have high global or regional
impact and for which an appropriate early warning system could be put in place. It
was also asked to consider the global natural hazard frameworks currently in place
and under development and their effectiveness in using scientific evidence; to
consider whether there is an existing appropriate international body to pull together
the international science community to advise governments on the systems that need
to be put in place, and to advise on research needed to fill current gaps in knowledge.
The Group was asked to make recommendations on whether a new body was
needed, or whether other arrangements would be more effective
Multiwavelength Mass Comparisons of the z~0.3 CNOC Cluster Sample
Results are presented from a detailed analysis of optical and X-ray
observations of moderate-redshift galaxy clusters from the Canadian Network for
Observational Cosmology (CNOC) subsample of the EMSS. The combination of
extensive optical and deep X-ray observations of these clusters make them ideal
candidates for multiwavelength mass comparison studies. X-ray surface
brightness profiles of 14 clusters with 0.17<z<0.55 are constructed from
Chandra observations and fit to single and double beta-models. Spatially
resolved temperature analysis is performed, indicating that five of the
clusters in this sample exhibit temperature gradients within their inner 60-200
kpc. Integrated spectra extracted within R_2500 provide temperature, abundance,
and luminosity information. Under assumptions of hydrostatic equilibrium and
spherical symmetry, we derive gas and total masses within R_2500 and R_200. We
find an average gas mass fraction within R_200 of 0.136 +/- 0.004, resulting in
Omega_m=0.28 +/- 0.01 (formal error). We also derive dynamical masses for these
clusters to R_200. We find no systematic bias between X-ray and dynamical
methods across the sample, with an average M(dyn)/M(X-ray) = 0.97 +/- 0.05. We
also compare X-ray masses to weak lensing mass estimates of a subset of our
sample, resulting in a weighted average of M(lens)/M(X-ray) of 0.99 +/- 0.07.
We investigate X-ray scaling relationships and find powerlaw slopes which are
slightly steeper than the predictions of self-similar models, with an E(z)^(-1)
Lx-Tx slope of 2.4 +/- 0.2 and an E(z) M_2500-Tx slope of 1.7 +/- 0.1.
Relationships between red-sequence optical richness (B_gc,red) and global
cluster X-ray properties (Tx, Lx and M_2500) are also examined and fitted.Comment: Astrophysical Journal, 48 pages, 11 figures, LaTeX. Added correction
to surface brightness normalization of MS1512.4+3647, corrections to sample
gas mass fractions and calculated value of Omega_m. Figure resolution has
been reduced to comply with astro-ph upload requirement
- …