4,012 research outputs found
Universal properties of distorted Kerr-Newman black holes
We discuss universal properties of axisymmetric and stationary configurations
consisting of a central black hole and surrounding matter in Einstein-Maxwell
theory. In particular, we find that certain physical equations and inequalities
(involving angular momentum, electric charge and horizon area) are not
restricted to the Kerr-Newman solution but can be generalized to the situation
where the black hole is distorted by an arbitrary axisymmetric and stationary
surrounding matter distribution.Comment: 7 page
Directed current in the Holstein system
We propose a mechanism to rectify charge transport in the semiclassical
Holstein model. It is shown that localised initial conditions, associated with
a polaron solution, in conjunction with a nonreversion symmetric static
electron on-site potential constitute minimal prerequisites for the emergence
of a directed current in the underlying periodic lattice system. In particular,
we demonstrate that for unbiased spatially localised initial conditions,
violation of parity prevents the existence of pairs of counter-propagating
trajectories, thus allowing for a directed current despite the
time-reversibility of the equations of motion. Occurrence of long-range
coherent charge transport is demonstrated
The interior of axisymmetric and stationary black holes: Numerical and analytical studies
We investigate the interior hyperbolic region of axisymmetric and stationary
black holes surrounded by a matter distribution. First, we treat the
corresponding initial value problem of the hyperbolic Einstein equations
numerically in terms of a single-domain fully pseudo-spectral scheme.
Thereafter, a rigorous mathematical approach is given, in which soliton methods
are utilized to derive an explicit relation between the event horizon and an
inner Cauchy horizon. This horizon arises as the boundary of the future domain
of dependence of the event horizon. Our numerical studies provide strong
evidence for the validity of the universal relation \Ap\Am = (8\pi J)^2 where
\Ap and \Am are the areas of event and inner Cauchy horizon respectively,
and denotes the angular momentum. With our analytical considerations we are
able to prove this relation rigorously.Comment: Proceedings of the Spanish Relativity Meeting ERE 2010, 10 pages, 5
figure
Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries
The speed meter concept has been identified as a technique that can
potentially provide laser-interferometric measurements at a sensitivity level
which surpasses the Standard Quantum Limit (SQL) over a broad frequency range.
As with other sub-SQL measurement techniques, losses play a central role in
speed meter interferometers and they ultimately determine the quantum noise
limited sensitivity that can be achieved. So far in the literature, the quantum
noise limited sensitivity has only been derived for lossless or lossy cases
using certain approximations (for instance that the arm cavity round trip loss
is small compared to the arm cavity mirror transmission). In this article we
present a generalised, analytical treatment of losses in speed meters that
allows accurate calculation of the quantum noise limited sensitivity of Sagnac
speed meters with arm cavities. In addition, our analysis allows us to take
into account potential imperfections in the interferometer such as an
asymmetric beam splitter or differences of the reflectivities of the two arm
cavity input mirrors. Finally,we use the examples of the proof-of-concept
Sagnac speed meter currently under construction in Glasgow and a potential
implementation of a Sagnac speed meter in the Einstein Telescope (ET) to
illustrate how our findings affect Sagnac speed meters with meter- and
kilometre-long baselines.Comment: 22 pages, 8 figures, 1 table, (minor corrections and changes made to
text and figures in version 2
First phylogenetic analyses of galaxy evolution
The Hubble tuning fork diagram, based on morphology, has always been the
preferred scheme for classification of galaxies and is still the only one
originally built from historical/evolutionary relationships. At the opposite,
biologists have long taken into account the parenthood links of living entities
for classification purposes. Assuming branching evolution of galaxies as a
"descent with modification", we show that the concepts and tools of
phylogenetic systematics widely used in biology can be heuristically transposed
to the case of galaxies. This approach that we call "astrocladistics" has been
first applied to Dwarf Galaxies of the Local Group and provides the first
evolutionary galaxy tree. The cladogram is sufficiently solid to support the
existence of a hierarchical organization in the diversity of galaxies, making
it possible to track ancestral types of galaxies. We also find that morphology
is a summary of more fundamental properties. Astrocladistics applied to
cosmology simulated galaxies can, unsurprisingly, reconstruct the correct
"genealogy". It reveals evolutionary lineages, divergences from common
ancestors, character evolution behaviours and shows how mergers organize galaxy
diversity. Application to real normal galaxies is in progress. Astrocladistics
opens a new way to analyse galaxy evolution and a path towards a new
systematics of galaxies
WORLDDEM – A NOVEL GLOBAL FOUNDATION LAYER
Airbus Defence and Space's WorldDEM™ provides a global Digital Elevation Model of unprecedented quality, accuracy, and coverage. The product will feature a vertical accuracy of 2m (relative) and better than 6m (absolute) in a 12m x 12m raster. The accuracy will surpass that of any global satellite-based elevation model available. WorldDEM is a game-changing disruptive technology and will define a new standard in global elevation models. The German radar satellites TerraSAR-X and TanDEM-X form a high-precision radar interferometer in space and acquire the data basis for the WorldDEM. This mission is performed jointly with the German Aerospace Center (DLR). Airbus DS refines the Digital Surface Model (e.g. editing of acquisition, processing artefacts and water surfaces) or generates a Digital Terrain Model. Three product levels are offered: WorldDEMcore (output of the processing, no editing is applied), WorldDEM™ (guarantees a void-free terrain description and hydrological consistency) and WorldDEM DTM (represents bare Earth elevation). Precise elevation data is the initial foundation of any accurate geospatial product, particularly when the integration of multi-source imagery and data is performed based upon it. Fused data provides for improved reliability, increased confidence and reduced ambiguity. This paper will present the current status of product development activities including methodologies and tool to generate these, like terrain and water bodies editing and DTM generation. In addition, the studies on verification & validation of the WorldDEM products will be presented
Self-organized escape of oscillator chains in nonlinear potentials
We present the noise free escape of a chain of linearly interacting units
from a metastable state over a cubic on-site potential barrier. The underlying
dynamics is conservative and purely deterministic. The mutual interplay between
nonlinearity and harmonic interactions causes an initially uniform lattice
state to become unstable, leading to an energy redistribution with strong
localization. As a result a spontaneously emerging localized mode grows into a
critical nucleus. By surpassing this transition state, the nonlinear chain
manages a self-organized, deterministic barrier crossing. Most strikingly,
these noise-free, collective nonlinear escape events proceed generally by far
faster than transitions assisted by thermal noise when the ratio between the
average energy supplied per unit in the chain and the potential barrier energy
assumes small values
Field of homogeneous Plane in Quantum Electrodynamics
We study quantum electrodynamics coupled to the matter field on singular
background, which we call defect. For defect on the infinite plane we
calculated the fermion propagator and mean electromagnetic field. We show that
at large distances from the defect plane, the electromagnetic field is constant
what is in agreement with the classical results. The quantum corrections
determining the field near the plane are calculated in the leading order of
perturbation theory.Comment: 16 page
Pressure-induced superconductivity in the giant Rashba system BiTeI
At ambient pressure, BiTeI is the first material found to exhibit a giant
Rashba splitting of the bulk electronic bands. At low pressures, BiTeI
undergoes a transition from trivial insulator to topological insulator. At
still higher pressures, two structural transitions are known to occur. We have
carried out a series of electrical resistivity and AC magnetic susceptibility
measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize
the properties of the high-pressure phases. A previous calculation found that
the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that
this structure is superconducting with Tc values as high as 6 K. AC magnetic
susceptibility measurements support the bulk nature of the superconductivity.
Using electronic structure and phonon calculations, we compute Tc and find that
our data is consistent with phonon-mediated superconductivity.Comment: 7 pages, 7 figure
- …